Recall that a (undirected) graph G is defined as an ordered pair (V, E) where V is a finite non-empty set, and $E \subseteq V^{(2)}$ is a set edges (two-element subsets of V). The elements of V are the vertices of G, and the elements of E are the edges of G. It is convention to refer to $|V|$ as n and $|E|$ as m.

An undirected bipartite graph G is defined as an ordered pair (V, E) where V can be partitioned into two sets A and B such that $E \subseteq \{ \{u, v\} \mid u \in A, v \in B \}$.

1. Prove by induction that, for any undirected graph $G = (V, E)$, the number of edges in G is twice the sum of degrees of all vertices in G, i.e. $\sum_{v \in V} d(v) = 2m$.

Solution: We prove this by induction on the number of edges in the graph. That is, we will prove that for every non-negative integer m, the claim holds for any graph with m edges.

Let m be an arbitrary non-negative integer. If $m = 0$, then every vertex in any graph G with zero edges has zero degree, so the claim holds in this case.

Otherwise, $m > 0$. Assume that the claim holds for all undirected graphs with less than m edges. Let $e = \{a, b\}$ be some edge in E, and let $G' = (V, E \setminus \{e\})$ be the graph obtained by removing e from G. Then G' has $m - 1 < m$ edges, so $\sum_{v \in V} d'(v) = 2(m - 1)$ by the induction hypothesis where $d'(v)$ denotes the degree of $v \in V$ in graph G'. Note that $d'(u') = d(u)$ for every vertex $v \in V \setminus e$; that is, any vertex that is not an endpoint of e has the same degree in G and G'. Similarly, see that $d(a) = d'(a) + 1$ and $d(b) = d'(b) + 1$ since a and b, the endpoints of edge e, have one more incident edge in G than in G', namely e. It follows that $\sum_{v \in V} d(v) = 2 + \sum_{v \in V} d'(v) = 2 + 2(m - 1) = 2m$ as desired.

2. Prove by induction that, for any undirected bipartite graph $G = (V, E)$ with bipartition A and B, $\sum_{v \in A} d(v) = \sum_{v \in B} d(v) = m$.

Solution: We will prove this by induction on the number of edges in the graph. That is, we will prove that for every non-negative integer m, the claim holds for any graph with m edges.

Let m be an arbitrary non-negative integer. If $m = 0$, then the degree of all vertices is also 0, so the claim holds in this case.

Otherwise, $m > 0$. Assume the claim holds for all undirected bipartite graphs with less than m edges. Consider any undirected bipartite graph $G = (V, E)$ with bipartition A and B and m edges. Let $e = \{a, b\}$ be an arbitrary edge in G for some $a \in A$ and $b \in B$, and let G' be the undirected graph obtained by removing edge e. Clearly G' is bipartite with bipartition A and B and has $m - 1$ edges, so $\sum_{v \in A} d'(v) = \sum_{v \in B} d'(v) = 2(m - 1)$ by the induction hypothesis where $d'(v)$ denotes the degree of vertex v in G'. Note that $d(v) = d'(v)$ for any vertex $v \notin \{a, b\}$, $d(a) = d'(a) + 1$, and $d(b) = d'(b) + 1$ since the only difference between G and G' is the edge $\{a, b\}$. It follows that $\sum_{v \in A} d(v) = 1 + \sum_{v \in A} d'(v)$ and $\sum_{v \in B} d(v) = 1 + \sum_{v \in B} d'(v)$ which immediately implies $\sum_{v \in A} d(v) = \sum_{v \in B} d(v)$ by the induction hypothesis. Finally, every vertex $v \in V$ is in exactly one of A or B, so from problem 1 we have $\sum_{v \in A} d(v) + \sum_{v \in B} = 2m$. It follows that $\sum_{v \in A} d(v) = \sum_{v \in B} = m$ as desired.
3. Prove by induction that, for any binary string s that begins with a 1 and ends with a 0, there is a 1 immediately before a 0 somewhere in s.

Solution: We prove this by induction on the length of the string. That is, we will prove that for every integer $n \geq 2$, the claim holds for any string of length n.

Let n be an arbitrary positive integer. If $n = 2$, there is only one string of length 2 that begins with a 1 and ends with a 0, namely $s = 0.1$. Clearly the claim holds for s in this case.

Otherwise $n > 2$. Assume the claim holds for all strings that begin with a 1, end with a 0, and have length k such that $2 \leq k < n$. Let s be an arbitrary string of length n that begins with 1 and ends with 0. Since $n > 2$, $s = 1.a.t.0$ where $a \in \{0, 1\}$ and t is a string of length $n - 3$. There are two cases for a:

(a) If $a = 0$, then $s = 1.0.t.0$ and the first 1 in s is immediately before the first 0 in s, so we are done.

(b) If $a = 1$, then $s = 1.1.t.0$. Let $u = 1.t.0$ which has length $n - 1$, begins with a 1, and ends with a 0. Since $2 \leq n - 1 < n$, the induction hypothesis implies u contains a 1 immediately before a 0, and thus $s = 1.u$ contains a 1 immediately before a 0.

4. A rooted binary tree is **full** if every node has either zero or two children. Prove that any rooted full binary tree with i internal nodes (those with at least one child) has $2i + 1$ total nodes.

Solution: We prove this by induction on the number of internal nodes. That is, we will prove that for every integer $i \geq 0$, the claim holds for any rooted full binary tree with i internal nodes.

Let i be an arbitrary non-negative integer. If $i = 0$, then the only tree with no internal nodes is the tree with a single root node which has no children. $2(0) + 1 = 1$ so the claim holds in this case.

Otherwise, $i > 0$. Assume that the claim holds for all rooted full binary trees with less than i internal nodes. Let T be an arbitrary rooted full binary tree with i internal nodes. Since $i > 0$, the root node of T has children, specifically two since T is full. Let the subtrees rooted at the two children be T_1 and T_2, and let j be the number of internal nodes in T_1. Any non-root node of T is internal in T if and only the node is internal in T_1 or T_2. This implies the number of internal nodes in T_2 is $(i - 1) - j$. Since T is full, T_1 and T_2 must be full. Since $0 \leq j < i$ and $0 \leq i - 1 - j < i$, the induction hypothesis implies T_1 has $2j + 1$ nodes and T_2 has $2(i - 1 - j) + 1 = 2i - 2j - 1$ nodes. It follows that T has $(2j + 1) + (2i - 2j - 1) + 1 = 2i + 1$ nodes.