Recall that a (undirected) graph G is defined as an ordered pair (V, E) where V is a finite non-empty set, and $E \subseteq V^2$ is a set edges (two-element subsets of V). The elements of V are the vertices of G, and the elements of E are the edges of G. It is convention to refer to $|V|$ as n and $|E|$ as m.

An undirected bipartite graph G is defined as an ordered pair (V, E) where V can be partitioned into two sets A and B such that $E \subseteq \{\{u, v\} \mid u \in A, v \in B\}$.

1. Prove by induction that, for any undirected graph $G = (V, E)$, the number of edges in G is twice the sum of degrees of all vertices in G, i.e. $\sum_{v \in V} d(v) = 2m$.

2. Prove by induction that, for any undirected bipartite graph $G = (V, E)$ with bipartition A and B, $\sum_{v \in A} d(v) = \sum_{v \in B} d(v) = m$.

3. Prove by induction that, for any binary string s that begins with a 1 and ends with a 0, there is a 1 immediately before a 0 somewhere in s.

4. A rooted binary tree is full if every node has either zero or two children. Prove that any rooted full binary tree with i internal nodes (those with at least one child) has $2i + 1$ total nodes.