- **Cycle property:** for any cycle in graph G, removing any one of its longest edges does not change the length of MST for G.

- **Cut property:** Given a subset of edges F, suppose F is a subset of an MST T. Pick any cut (S, \bar{S}) that does not intersect with F, let e be (any) edge with minimum cost in (S, \bar{S}), then $F \cup \{e\}$ is a subset of an MST T' (T' may or may not be the same as T).

Proof of cut property:

Let e be min cost edge of cut (S, \bar{S}).

Case 1: e is an edge in T, this is trivial because $F \cup \{e\} \subseteq T$, can choose $T' = T$.

Case 2: e is not an edge in T.

1. **Black:** edges in T
2. **Green:** MST T containing F
3. **Purple:** min cost edge e
4. **Yellow:** cycle formed by adding edge e
5. **Green:** an edge in C, (S, \bar{S}), T'
6. **Blue:** new MST T'
add e to T form a cycle, call it C.

every cycle that interese S with (S, S') must intersect an even number of times.

there must be another edge $e' \in C$

$e' \in T$, e' also crosses the cut (S, S')

we will swap e and e'

define $T' = (T \setminus \{e\}) \cup \{e'\}$

$\text{cost}(T') = \text{cost}(T) - w(e') + w(e)$

$\leq \text{cost}(T)$ by assumption $w(e) \leq w(e')$

if T is an MST, then T' is also an MST.

since $E \cup \{e'\} \subseteq T'$, this concludes the proof. \(\square \)

- Prim's algorithm

\[\text{Graph} \]

\[\text{Diagram} \]
- In implementation, want to find min cost edge in the cut efficiently.

 maintain an array \(\text{dis}(u) \)

 \(\text{dis}(u) \): minimum cost of an edge \((u,v)\) where \(v\) is already connected to \(S\).

 running time: \(O(m+n \log n) \) (use Fibonacci heap)

- Kruskal

 \[
 \begin{align*}
 \text{union } (1,2) \\
 \{1,2\} \quad \{3\} \quad \{4\} \quad \{5\} \\
 \text{find}(3) = \text{find}(4) \\
 \text{union } (3,4) \\
 \{1,2\} \quad \{3,4\} \quad \{5\} \\
 \text{find}(1) = \text{find}(3) \\
 \text{union } (1,3) \\
 \{1,2,3,4\} \quad \{5\} \\
 \text{find}(2) = \text{find}(4) \\
 \text{adding this edge creates a cycle, Kruskal will not add this edge.} \\
 \text{find}(3) = \text{find}(5) \\
 \text{union } (3,5)
 \end{align*}
 \]
- Implementing Kruskal
 - union-find data structure.
 - maintain disjoint sets of \(\{1, 2, \ldots, N \} \)
 - initially, every element is in a separate set
 \(\{1\}, \{2\}, \{3\}, \ldots, \{N\} \)
 (corresponds to the case that none of the vertices are connected)
 - two operations
 1. union: merges two sets
 2. find: for every element \(u \), \(\text{find}(u) \) identifies the
 set that \(u \) belongs to.
 - if \(u, v \) are in the same set \(\text{find}(u) = \text{find}(v) \)
 - if \(u, v \) are in different sets \(\text{find}(u) \neq \text{find}(v) \)

- one implementation of union-find
 - idea: use a tree structure
 - every tree \(\leftrightarrow \) set
 - every vertex maintains a pointer to its parent

- find: finds the root of tree

\[\text{find}(1) = 1, \quad \text{find}(2) = 1 \]
\[\text{find}(4) = 1 \quad \text{find}(2) = 1 \]

- **union**: first find the two roots, point one of them to the other

\[1 \quad 2 \quad 3 \quad 4 \quad 5 \]

union 0 2

\[1 \]
\[\{1, 2\} \]

union 3 4

\[2 \]
\[3 \]
\[\{3, 4\} \]

union 0 3

\[0 \]
\[\{1, 2, 3, 4\} \]

union 3 5

\[3 \]
\[4 \]
\[\{3, 4, 5\} \]

Claim: always link shallower tree to deeper tree, depth of the tree is at most $O(\log n)$.

Runtime: find: proportional to depth $O(\log n)$

union: two find operations + linking $O(1)$

$O(\log n)$

This implementation: can check whether adding (u, v) creates a cycle in $O(\log n)$ time.
\[\Rightarrow \text{Kruskal runs in } O(m \log n). \]