- **Bipartite Graphs**
 - used as abstractions for relations of two types of objects.

- $G = (U, V, E) \quad E \subseteq \{ (u, v) \mid u \in U, v \in V \}$
 - every edge connects one vertex in U with another vertex in V.

- $|U| = n_1, \quad |V| = n_2, \quad |M| = m$

- a matching M of a bipartite graph is a subset of edges such that no two edges in M share a vertex.

\[
\{ (1,1), (3,2), (2,3) \} \text{ is matching}
\]

\[
\{ (2,2), (2,3) \} \text{ is not a matching}
\]

- size of a matching M is the number of edges in M
- maximum matching is a matching with maximum number of edges.

- for a bipartite graph G and a matching M
 - call a vertex "matched" if the vertex is adjacent to an edge in M
 - $(1, 2, a, b$ matched, $3, c$ are unmatched)
 - call an edge e matched if $e \in M$, otherwise e is unmatched
 - augmenting path: path connecting two unmatched vertices, the edges alternate between unmatched edge and matched edge.

\[
(2 \quad 1 \quad b \quad 3 \quad a) \text{ is an augmenting path}
\]
and matched edge.

\[(3, b) (b, 2) (2, c)\] is an augmenting path.

\[(3, b) (b, 1) (1, c)\] is not an augmenting path.

Fact: length of augmenting path is always odd.

First and last edges of the augmenting path are unpaired.

- XOR operation \(\oplus\)

\[\text{if } x \text{ and } y \text{ are } 0, 1\] \(x \oplus y\) is equal to 1

\[\text{if and only if } x \neq y\]

\[\text{(if only one of } x, y \text{ is equal to 1)}\]

\[\text{only in } M\]

\[\text{only in } P\]

Matching \(\text{augmenting path}\) \(\text{matching with one more edge}\).

- Using DFS to find augmenting path
- Proof of correctness

 Assume towards contradiction that M is not a maximum matching.

 Let \(M' \) be a maximum matching

 \(|M'| > |M| \)

 Consider \(M' \oplus M \)

 Claim: \(M' \oplus M \) is going to have only paths or cycles.

 Idea: in \(M' \oplus M \), every vertex has degree at most 2.

- For a cycle: it contains the same \# of edges in \(M, M' \)
- For a path: one of the matching has one more edge of odd length

Know: \(|M'| > |M| \), so there must be a path of odd length where first and last edge are \(M' \); this path is an augmenting path for \(M \) and this contradicts the assumption that \(M \) does not
Assumption that M does not have any augmenting path.

3 \rightarrow c \rightarrow c
4 \rightarrow d \rightarrow od
5 \rightarrow of \rightarrow og
6 \rightarrow M \rightarrow M' \rightarrow $M \oplus M'$