- Primal and dual

Primal

\[
\begin{align*}
\text{min } & (2 \quad -3 \quad 1) \cdot x \\
\begin{bmatrix}
1 & -1 & 0 \\
0 & 1 & -2 \\
-1 & -1 & -1
\end{bmatrix} & \geq \\
x_1, x_2, x_3 & \geq 0
\end{align*}
\]

Dual

\[
\begin{align*}
\text{max } & (1 \quad 2 \quad -7) \cdot y \\
\begin{bmatrix}
1 & 0 & -1 \\
-1 & 1 & -1 \\
0 & -2 & -1
\end{bmatrix} & \leq \\
y_1, y_2, y_3 & \geq 0
\end{align*}
\]

\[(y_1, y_2, y_3) = (2.5, 0, 0.5)\] dual optimal solution

\[y_1 \bar{x}_1 (x_1 - x_2 \geq 1) + y_2 \bar{x}_2 (x_2 - 2x_3 \geq 2) + y_3 \bar{x}_3 (x_1 - x_2 - x_3 \geq -7)\]

\[\Rightarrow \\
2x_1 - 3x_2 - \frac{1}{2} x_3 \geq -1
\]

\[2x_1 - 3x_2 + x_3 \geq 2x_1 - 2x_2 - \frac{1}{2} x_3 \geq -1\]

\[y_1 - y_3 - y_1 + y_2 - y_3 - 2y_2 - y_3
\]

\[(x_1, x_2, x_3) = (4, 3, 0)\] primal optimal solution

\[4 \bar{x}_1 (y_1 - y_3 \leq 2) + 3 (-y_1 + y_2 - y_3 \leq -3)\]

\[\Rightarrow y_1 + 3y_2 - 7y_3 \leq -1
\]

\[y_1 + 2y_2 - 7y_3 \leq y_1 + 3y_2 - 7y_3 \leq -1\]

- Complementary slackness
- let \(x \) and \(y \) be optimal solutions of primal and dual LP.
- call a constraint tight if the LHS is exactly equal to the RHS.
- if \(i \)-th constraint in primal is not tight, then the \(i \)-th variable of the dual is equal to 0.
- i-th variable of the dual is equal to 0
- i-th constraints in dual is not tight, then the i-th variable of the primal is equal to 0.

- primal slack \(i \) = LHS of primal constraint \(i \) - RHS of primal constraint \(i \)

 e.g. primal slack \(i \) = \(x_1 - x_2 - 1 \)

 \[
 \begin{pmatrix}
 \text{primal slack } \(i \) \\
 \end{pmatrix} \times y_i = 0
 \]

- Simplex algorithm
 - basic feasible solution
 - geometric: vertex of the feasible region
 - linear algebraic: feasible solution where there are \(n \) tight constraints with linearly independent coefficients.

 e.g. \((4,3,6)\) is a basic feasible solution because it is a solution of

 \[
 \begin{align*}
 x_1 - x_2 &= 1 \\
 -x_1 - x_2 - x_3 &= -7 \\
 x_3 &= 0
 \end{align*}
 \]

 \[
 \begin{pmatrix}
 x_1 - x_2 \\
 -x_1 - x_2 - x_3 \\
 x_3
 \end{pmatrix} \times y_i = 0
 \]

- ellipsoid algorithm
 - main idea: maintain an ellipsoid
 - check if the center is feasible
 - if not, find the violating constraint
if not, find the violating constraint and cut the ellipsoid in half.