Lecture 1: Asymptotic Notations, Euclid’s Algorithm
Scriber: Xingyu Chen
September 2017

1 Asymptotic Notation
The Asymptotic Notation is to roughly measure the running time or memory for algorithm. So we will only keep the most weighted term. E.g. In Asymptotic Notation, $3n^2 + 2n \approx n^2 \neq 2^n$.

1.1 Definition
Definition 1. $f(n) = O(g(n))$, if there is constants $C > 0$, $n_0 > 0$ such that for all $n \geq n_0$, $f(n) \leq C \cdot g(n)$

Definition 2. $f(n) = \Omega(g(n))$, if there is constants $C > 0$, $n_0 > 0$ such that for all $n \geq n_0$, $f(n) \geq C \cdot g(n)$

Definition 3. $f(n) = \Theta(g(n))$, if $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$

Definition 4. $f(n) = o(g(n))$, if $g(n) \neq O(f(n))$. In other words, $f(n)$ becomes insignificant relative to $g(n)$ as n approaches infinity, $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

Definition 5. $f(n) = \omega(g(n))$, if $f(n) \neq O(g(n))$. In other words, $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$

1.2 Example
(a) $3n^2 + 2n = O(n^2)$

Proof.
$3n^2 + 2n \leq 3n^2 + 2n^2 = 5n^2$

In the definition, we can choose $C = 5$, $n_0 = 1$. From there we obtain
$3n^2 + 2n \leq C \cdot n^2$

So $3n^2 + 2n = O(n^2)$

(b) $n^2 \neq O(n)$, $(n^2 = \omega(n))$
Proof. Use contradiction to prove, assume \(n^2 = O(n) \), there is \(C > 0, n_0 > 0 \) s.t. when \(n \geq n_0, n^2 \leq C \cdot n \).
Pick \(n > \max\{n_0, C\} \). Then we have \(n^2 = n \cdot n > C \cdot n \). Contradiction! Therefore \(n^2 \neq O(n) \)

There’s a useful inequality useful in asymptotic notation

Remark 1.
\[
\log n < \sqrt{n} < n \log n < n^2 < 2^n < 3^n < n!
\]

2 The Importance of Asymptotic Notation

For this section, let’s consider a well-known sorting algorithm Bubble Sort to take a close look at the usage and importance of asymptotic notation.

2.1 Algorithm

Bubble Sort is a sort algorithm which compares each element to its neighbor and swap if not in order. The pseudocode is as below:

\[
\begin{align*}
\text{for } i &= n \text{ downto } 1 \\
&\quad \text{for } j = 1 \text{ to } i-1 \\
&\quad \quad \text{if } a[j] > a[j+1] \text{ then swap}
\end{align*}
\]

2.2 Analysis of running time

Each round, the inner loop will run \(i - 1 \) times in each outer loop round while \(i \) goes from \(n \) to 1. So
\[
T = (n - 1) + (n - 2) + \ldots + 1 = \frac{n(n-1)}{2}
\]

2.3 Analysis of running time II

Now we consider a problem that if there is an algorithm that calls Bubble Sort on an array of size \(1, 2, 3, \ldots, n \). What can we say about the running time?

Of course there are still ways to calculate the exact expression for running times as below:

\[
T = \frac{1 \cdot 0}{2} + \frac{2 \cdot 1}{2} + \ldots + \frac{n \cdot (n-1)}{2}
= \frac{2 \cdot 1 - 1 \cdot 0}{6} + \frac{3 \cdot 2 - 2 \cdot 1}{6} + \frac{4 \cdot 3 - 3 \cdot 2}{6} + \ldots + \frac{(n+1) \cdot n - n \cdot (n-1) - n \cdot (n-1) \cdot (n-2)}{6}
= \frac{(n+1)n(n-1)}{6}
\]

However, there’s not always such a clever way to obtain an accurate polynomial. By using asymptotic notation, we can obtain a bound for running time more easily and for more occasions.
Claim 1. \(T = \Theta(n^3) \)

Proof.

\[
T = \sum_{i=1}^{n} \frac{i(i-1)}{2} \leq n \cdot \frac{n(n-1)}{2} = O(n^3)
\]

On the other hand,

\[
T = \sum_{i=1}^{n} \frac{i(i-1)}{2} > \sum_{i=\frac{n}{2}+1}^{n} \frac{i(i-1)}{2} \geq n \cdot \frac{(\frac{n}{2})^2}{2} = \frac{n^3}{16} = \Omega(n^3)
\]

In conclusion, \(T(n) = \Theta(n^3) \)

\[\square\]

3 Euclid’s Algorithm

The Euclid’s Algorithm aims to compute greatest common divisor (g.c.d) of 2 integers. For example,

\[\text{gcd}(15, 9) = 3\]

3.1 Algorithm

\begin{algorithm}
\caption{Euclid’s Algorithm}
\begin{algorithmic}[1]
\STATE \textbf{if} \(b == 0 \) \textbf{then}
\STATE \hspace{1cm} \textbf{return} \(a \)
\STATE \textbf{else}
\STATE \hspace{1cm} \textbf{return} \text{gcd}(\(b, a \mod b \))
\end{algorithmic}
\end{algorithm}

Example Run:

\[\text{gcd}(15, 9) \rightarrow \text{gcd}(9, 6) \rightarrow \text{gcd}(6, 3) \rightarrow \text{gcd}(3, 0) \rightarrow 3\]

3.2 Proof of Correctness

We use induction to prove.

Base Case:
if \(b = 0 \), \(\text{gcd}(a, 0) = a \). \(a \) is indeed the greatest common divisor of \(a \) and 0. Base case is correct.

Induction:
We want to prove the following claim.

Claim 2.

\[\text{gcd}(a, b) = \text{gcd}(b, a \mod b)\]
Proof. Assume \(\gcd(b, a \mod b) \) is the greatest common divisor of \(b \) and \((a \mod b) \).

1. If \(c \mid a, c \mid b \), then
\[
\frac{a \mod b}{c} = \frac{a - k \cdot b}{c} = \frac{a}{c} - \frac{k \cdot b}{c}
\]
Since \(c \mid a \) and \(c \mid b \), then \(k, \frac{a}{c}, \text{ and } \frac{b}{c} \) are all integers. So \(\frac{a \mod b}{c} \) must be an integer as well. In other words, \(c \mid (a \mod b) \).

2. If \(c \mid a, c \mid (a \mod b) \), then
\[
\frac{a}{c} = \frac{(a - k \cdot b) + k \cdot b}{c} = \frac{a}{c} - \frac{k \cdot b}{c} + \frac{k \cdot b}{c}
\]
Since \(c \mid a \) and \(c \mid (a \mod b) \), then \(k, \frac{a-kb}{c} \text{ and } \frac{b}{c} \) are all integers. So \(\frac{a}{c} \) must be an integer as well. In other words, \(c \mid a \).

From the above two parts, we know that for any arbitrary integer \(c \), if it divides \(a \) and \(b \), it divides \((a \mod b) \). If it divides \(b \) and \(a \mod b \), it divides \(a \) as well. So the set of common divisors for \((a, b) \) and \((b, a \mod b) \) are the same.

By induction hypothesis, \(\gcd(b, a \mod b) \) is correct (i.e. \(\gcd(b, a \mod b) \) is the greatest common divisor of \(b \) and \((a \mod b) \)). Since the set of common divisors are the same for \((a, b) \) pair and \((b, a \mod b) \) pair, \(\gcd(a, b) \) must as well be the greatest common divisor of \(a \) and \(b \). \(\square \)