- Quick Selection
 - Idea: similar to quick sort

 pick a pivot

 split the array into two parts

 suppose pivot point a[p] is the i-th smallest number.

 if k < i
 \[\text{recursively on the left}\]

 else if k = i
 \[\text{return a[p]}\]

 else
 \[\text{recursively on the right}\]

- Hash tables
 - Goal: maintain a set of numbers in 0, 1, 2, ..., N-1

 think of \[\sqrt{N} = 2^q\]

 set \(\{0, 1, 2, \ldots, N-1\}\) (set of all possible values)

 is called the universe.

 in a set, there will be \(n\) numbers from the universe.

 1) Efficient look-up: checking whether a number is in the set takes \(O(1)\)

 2) Space: data structure should take \(O(n)\) space.

- hash table

 1) choose size \(m\) of the hash table.

 2) choose a hash function \(f(x)\)

 \[f(x): \{0, 1, \ldots, N-1\} \rightarrow \{0, 1, 2, \ldots, m-1\}\]

 3) allocate an array size \(m\), at each location, have a pointer to a linked list.
4 operations on X will be performed on the linked list at location $f(x)$.

$123 \quad f(123) = 5$

$234 \quad f(234) = 11$

$345 \quad f(345) = 5$

Best case: Every number in the set is in its own location (all linked lists have size ≤ 1).

Worst case: Every number in the set has the same hash function value.

Running time = $O(n)$ essentially a linked list.

- Choosing a random hash function

Possible hash functions? For each number in universe, there are m choices

$\frac{m}{N}$

Storing a totally random hash function takes $\log_2 m^N$ bits

$= N \cdot \log_2 m$

- In practice: Choose a pairwise independent hash family f

$\forall x, y \in \{0, 1, \ldots, N-1\}, \text{ if } x \neq y$

$D \rightarrow f(x) = f(y) \Rightarrow \boxed{1}$
\[a, b, y \leq 0, 1, \ldots, N-1, \quad i \leftrightarrow x \leftrightarrow y \]

\[\Pr_{f \sim F} [f(x) = f(y)] = \frac{1}{m} \quad \text{size of hash table} \]

there are pairwise independent hash families of size \(N^2 \).

storing a random function in this family

takes \(\log_2 N^2 = 2 \log_2 N \) bits.

- Example: hash table has \(n \) elements \(\{x_1, x_2, \ldots, x_n\} \)

 query \(y \) (want to find out whether \(y \in \{x_1, x_2, \ldots, x_n\} \))

 what is the expected running time of the query?

 idea: running time = length of the linked list at \(f(y) \)

 let \(X \) be the length of the linked list.

 try to compute \(\mathbb{E}[X] \)

 let \(X_i \) be a random variable

 \[X_i = \begin{cases} 0, & f(x_i) = f(y) \\ 1, & f(x_i) \neq f(y) \end{cases} \]

 \[X = X_1 + X_2 + \cdots + X_n \]

 \[\mathbb{E}[X] = \mathbb{E}[X_1] + \mathbb{E}[X_2] + \cdots + \mathbb{E}[X_n] \]

 \[\mathbb{E}[X_i] = \begin{cases} 1, & X_i = y \\ \frac{1}{m}, & X_i \neq y \end{cases} \quad \text{pairwise independent hash family.} \]

 \[\leq 1 + \frac{n-1}{m} \leq O(1 + \frac{n}{m}) \]

 if we choose \(m = \Theta(n) \)

 \[\mathbb{E}[X] = O(1) \]

 \[\square \]