- polynomial time reduction
 - A \rightarrow B: spend \text{poly time} on input X of A to prepare an input Y for B, then return B(Y)
 - poly time: if there is a poly time reduction from A \rightarrow B if B has a poly time algorithm, then A has a poly time algorithm. (if B \in P, A \in P)
 - no post processing: related to definition of NP
 \begin{align*}
 \text{NP} & \quad \text{answer} = \text{YES} \quad \exists \text{ solution s.t. verifier accepts} \\
 \text{NP} & \quad \text{answer} = \text{NO} \quad \text{no solution that verifier accepts}
 \end{align*}

- \text{NP-hard problems}
 - Problem B is \underline{NP-hard}, if for any problem A \in \text{NP} there is a polynomial time reduction from A \rightarrow B
 - Problem B is \underline{NP-complete}, if B is NP-hard, and B is in NP.

- Polynomial time reduction from A to B

 \begin{align*}
 A \leq B \\
 A \leq B, B \leq C \Rightarrow A \leq C
 \end{align*}

 \begin{align*}
 \text{A(}\text{input}X) & \rightarrow B(\text{input}Y) \rightarrow C(\text{input}Z) \\
 \text{if NP-hard problem B is in P} \quad \text{then since every NP problem A \leq B, A \in P} \\
 \Rightarrow P = NP
 \end{align*}
- if both A and B are NP-complete, then if one of them has a poly-time algorithm, the other one also has a poly-time algorithm.

$$B \text{ is NP-complete } \Rightarrow B \text{ is NP hard } \quad A \leq B$$

$$A \text{ is NP-complete } \Rightarrow A \text{ is in NP } \quad B \leq A$$

- Prove a problem B is NP-hard.
 - find an NP-hard problem A
 - do a poly-time reduction from A to B

$$A \leq B$$

for any $C \in NP$ $C \leq A$

$$C \leq B$$

- Cook-Levin Theorem

- CIRCUIT-SAT problem is NP-hard.

- For any NP problem A, there is a poly-time answer to $A = \begin{cases} YES & \exists \text{ Solution} \\ NO & \forall \text{ Solution} \end{cases}$

\[
\begin{align*}
\text{Verifier}(\text{input } X, \text{ solution}) \\
\{ \text{ input } X, \text{ solution} \} \rightarrow \text{Verifier (solution)} \\
\ldots \text{return true if else,} \\
\text{return felse.} \\
\text{Compile} \\
\text{Circuit} \\
\text{Solution} \\
\text{return value} \\
\text{run CIRCUIT-SAT on this} \\
\end{align*}
\]

- reduction

- INDEPENDENT SET to CLIQUE
1. **transform X for INDEP. SET \[\Rightarrow Y \text{ for CLIQUE}**
 - Observation: INDEP. SET want vertices to have no edges
 - CLIQUE want vertices to be connected

 ![Diagram of X for INDEP. SET and Y for CLIQUE]

 \[K = 2\]

 - Idea: flip edges

 - In first step, cannot use the solution to the INDEP. SET problem

2. **X is YES \[\Rightarrow Y \text{ is YES}**
 - X has indep. set of size K
 - Y has clique of size K
 - Solution for X \[\Rightarrow\] Solution for Y
 - Claim: every independent set of the original graph is a clique in the new graph.

3. **X is NO \[\Rightarrow Y \text{ is NO}**
 - Y is YES \[\Rightarrow\] X is YES
 - Solution for Y \[\Rightarrow\] Solution for X
 - Claim: every clique in the new graph is an independent set in the original graph.

- 3-SAT

\[
(X_1 \lor X_2 \lor X_3) \land (\overline{X_2} \lor X_3 \lor X_4) \land (\overline{X_1} \lor X_2 \lor \overline{X_4})
\]

Answer: Yes \[X_1 = \text{true}, \ X_2 = \text{true}\]
\[x_3 = \text{true} \quad x_4 = \text{anything} \]
\[
(x_1 \lor x_2) \land (\overline{x_1}) \land (\overline{x_2})
\]

Answer: No

- Reduction: 3-SAT \(\rightarrow \) INDEP. SET

\[
x_1 \lor x_2 \lor \overline{x_3} \quad \overline{x_2} \lor x_3 \lor x_4 \quad \overline{x_1} \lor x_2 \lor \overline{x_4}
\]

\[K : \text{intuition: for a satisfying assignment } \]
\[\text{can choose 1 vertex from every variable gadget} \]
\[\text{choose 1 vertex from every clause gadget} \]

\[K = \Pi + M \]

Step 2: 3-SAT YES \(\Rightarrow \) INDEP. SET YES