- Longest Increasing Subsequence (LIS)

\[a = [4, 2, 5, 3, 9, 7, 8, 10, 6] \]

\[b = [2, 5, 7, 8, 10] \text{ length } = 5 \]

- attempt 1

6 is not in LIS, LIS \([4, 2, 5, 3, 9, 7, 8, 10] \)

6 is in LIS

finding LIS \([4, 2, 5, 3, 9, 7, 8, 10] \)

\[\overline{\{2, 5, 7, 8, 10\}} \]

does not work because

\[\overline{\{2, 5, 7, 8, 10, 6\}} \] is not an increasing subsequence

want: \(LIS = [4, \ldots, 10] \) if every number \(< 6\)

- attempt 2

LIS recursive \((0) \) return length of LIS ending at \(a[i] \)

\([4, 2, 5, 3, 6] \)
- recursive search: call \text{LIS_recursive} (2) multiple times
- dynamic programming

\underline{state:} let \(f[i] \) be the length of LIS ending at \(a[i] \).

\underline{transition function:}

\[
f[i] = \max \left\{ f[j] + 1 \mid \text{for every } j < i, \ a[j] < a[i] \right\}
\]

\[
\begin{align*}
1 & \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \\
\{4, 2, 5, 3, 9, 7, 8, 10, 6\} \\
\end{align*}
\]

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
f[0] & 1 & 1 & 2 & 2 & 3 & 3 & 4 & 5 & 3 \\
\end{array}
\]

\underline{set up base case}

\underline{for } \ i = 1 \ \text{to} \ \ n
\underline{evaluate the transition function at } f[i]

\underline{code for outputting solution (output } \max \ f[i])

\underline{analyze running time}

\[
\text{running time} = \# \text{states } \times \text{time for evaluating one transition function}
\]

\[
\begin{align*}
\text{LIS: } & \ n \quad O(n) \\
\text{running time: } & \ O(n^2) \\
\text{Knapsack: } & \ nW \quad O(1) \\
\text{running time: } & \ O(nW)
\end{align*}
\]
- Proof for Correctness.

 Use induction.

 Induction hypothesis: "smaller subproblems are computed correctly."

 Before iterating for every \(j < i \), \(f[i, j] \) is length of LIS ending at \(a[i] \).

 Induction: when computing \(f[i, j] \)

 Let \(b[i] \) be the LIS ending at \(a[i] \).

 Case 0: \(b[i] \) has length 1, considered by the 1st case of transition function.

 Case 1: Let \(a[c] \) be the second-to-last number in \(b[i] \), by definition \(j < i \).

 \[
 a[c] \leq a[i, j] \]

 by IH, length \(b[i] \) \(\leq f[i, j] + 1 \)

 \(f[i, j] + 1 \) is considered in transition function.

 Therefore \(f[i, j] \) is also computed correctly.