4.1 Overview

Dynamic programming is a method that follows a similar theme to other techniques learned this semester: In order to solve a large, complicated problem, we first split it into smaller sub-problems. With dynamic programming, the basic idea is to break the problem down into many closely related sub-problems, solve them, and then store their results for later use. In this way, dynamic programming avoids recomputing the results of the sub-problems, allowing it to achieve better runtimes than naive approaches. In this lecture, we will demonstrate the technique through two examples: the longest increasing subsequence problem and the knapsack problem.

4.2 Longest Increasing Subsequence

Definition 4.1 Given an input array A, a subsequence is a list of numbers that appears in the same order as the elements of A, though not necessarily consecutively. A subsequence x_1, x_2, \ldots, x_k is increasing if for all $1 \leq i < k$, $x_i < x_{i+1}$. The longest increasing subsequence of A is then the increasing subsequence in A with maximal length.

For instance, consider the array $\{4, 2, 5, 3, 9, 7, 8, 10, 6\}$. An example of a subsequence is $\{4, 2, 5\}$, an example of an increasing subsequence is $\{2, 3, 8\}$, and the longest increasing subsequence is $\{2, 5, 7, 8, 10\}$ (or $\{2, 3, 7, 8, 10\}$).

In this example, we will try to find the length of the longest increasing subsequence of the following array:

$$A = \{4, 2, 3, 5, 1, 7, 10, 8\}$$

The first step in creating a dynamic programming solution is to relate the problem recursively to smaller sub-problems. We will therefore begin by focusing on just the last element of this sequence, 8. We then have two options to consider for this element:

Option 1: 8 is not in the longest increasing subsequence.

Option 2: 8 is in the longest increasing subsequence.

Dealing with option 1 is easy. We just recurse on all of the other elements in A, i.e. $\{4, 2, \ldots, 10\}$. Option 2 is trickier to deal with. To see why, consider that in this example, the LIS of $\{4, 2, 3, 5, 1, 7, 10\}$ is $\{2, 3, 5, 7, 10\}$. 10 > 8 so we clearly cannot add 8 to the end of this sequence. Our goal then, should be to find a transition function that properly relates the solution for this sub-problem to that of other sub-problems.
To this end, we will define \(a[i] \) to be the length of the longest increasing subsequence of \(A \) that ends at the \(i \)th element of \(A \). We can determine the value of \(a[i] \) in the following way. Consider all of the \(i - 1 \) elements in \(A \) both previous to \(A[i] \) and smaller than it, i.e. \(\{ j \in [1, i - 1] \mid A[i] > A[j] \} \). These are the elements that \(A[i] \) could be appended to in an increasing subsequence. Choose the \(a[j] \) with maximal value, and set \(a[i] = a[j] + 1 \) (effectively adding element \(A[i] \) to the end of the longest increasing subsequence possible). So we have:

\[
a[i] = \begin{cases}
1 & \text{if } A[i] < A[j] \forall j < i \\
1 + \max_{j<i, A[j]<A[i]} A[j] & \text{otherwise}
\end{cases}
\]

\(a[i] \) depends on all of the elements before it, so when we create our dynamic programming table, we will start at \(a[1] \) and then progressively fill it in from left to right. Once we’ve determined values for all \(a[i] \), we just select the one with the maximum value, and the algorithm is complete.

Algorithm 1 Dynamic programming method for LIS

Require: \(A \) is an array of length \(n \).

Ensure: \(LIS \) is the length of the longest increasing subsequence of \(A \).

procedure LONGESTINCREASINGSUBSEQUENCE(A)

\[
LIS = 0 \\
\text{for } i \text{ in } \{1, 2, \cdots, n\} \text{ do} \\
\quad a[i] = 1 \\
\quad \text{for } j \text{ in } \{1, 2, \cdots, i - 1\} \text{ do} \\
\qquad \text{if } A[j] < A[i] \text{ and } a[j] + 1 > a[i] \text{ then} \\
\qquad \quad a[i] = a[j] + 1 \\
\qquad \text{end if} \\
\quad \text{end for} \\
\quad \text{if } a[i] > LIS \text{ then} \\
\qquad LIS = a[i] \\
\quad \text{end if} \\
\text{end for} \\
\text{return LIS}
\]

end procedure

4.3 Knapsack

The knapsack problem is stated as follows. There is a knapsack that can hold items of total weight at most \(W \). There is also a set \(I \) of \(n \) items available. Each item \(i \in I \) has an associated weight \(w_i \) and value \(v_i \). The goal is to select a subset of the items to place in the knapsack, so that the total weight is less than \(W \) and the total value is maximized. Stated in another way, we wish to choose the subset \(K \subseteq I \) that maximizes \(\sum_{i \in K} v_i \), subject to \(\sum_{i \in K} w_i \leq W \).

As before, we will begin by breaking the problem down into smaller sub-problems. We look at the last item, and consider two possible options:

Option 1: The last item is not in the knapsack.

Option 2: The last item is in the knapsack.
To compare these two options, we will define \(a[i, j] \) to be the maximum total value that can be obtained from using only the first \(i \) items, with a weight capacity of \(j \). We see that if we choose option 1, and do not add item \(i \) to the knapsack, we can just maximize value over the remaining \(i - 1 \) items, i.e. \(a[i, j] = a[i - 1, j] \). If we choose option 2, we add value \(v_i \) to the knapsack, and then maximize value over the remaining \(i - 1 \) items, keeping in mind that the capacity must also be decreased by weight \(w_i \), i.e. \(a[i, j] = v_i + a[i - 1, j - w_i] \). We will choose the option that provides maximal value, so we have:

\[
a[i, j] = \max \left\{ \begin{array}{ll}
a[i - 1, j] & \text{(do not put item } i \text{ in knapsack)} \\
v_i + a[i - 1, j - w_i] & \text{(put item } i \text{ in knapsack)}
\end{array} \right.
\]

We must also define base cases, namely whenever \(i = 0 \), or \(j \leq 0 \), \(a[i, j] = 0 \) (because we can’t add items if we have no items left or if the capacity is spent). To construct the dynamic programming table, we make a two-dimensional table, with \(i \) on the horizontal axis going from 1 to \(n \), and \(j \) on the vertical axis going from 1 to \(W \). We then fill in the table, starting at \(a[1, 1] \) and filling in each row from left to right. Once we have completely filled in the table, our answer will be the value \(a[n, W] \).

\[\text{Algorithm 2 Dynamic programming method for knapsack problem}\]

\begin{algorithm}
\textbf{Require:} \(I \) contains \(n \) items. Each \(i \in I \) has a weight \(w_i \) and a value \(v_i \). \(W \) is maximum capacity.
\textbf{Ensure:} \(a[n, W] \) is the maximum possible value we can place into knapsack.

\begin{procedure}
\caption{Knapsack(\(I, W \))}
\For{\(i \in \{1, 2, \ldots, n\} \)}
\For{\(j \in \{1, 2, \ldots, W\} \)}
\State \(\text{optionOne} = a[i - 1, j] \)
\State \(\text{optionTwo} = v_i + a[i - 1, j - w_i] \)
\State \(a[i, j] = \max\{\text{optionOne, optionTwo}\} \)
\EndFor
\EndFor
\end{procedure}
\end{algorithm}