Announcements

- HW1 deadline:
 - Due on 09/21 (Thurs), 11:55 pm, no late days
- Project proposal deadline:
 - Preliminary idea and team members due by 09/18 (Mon) by email to the instructor
 - Proposal due on sakai by 09/25 (Mon), 11:55 pm

Today

- Finish RC from Lecture 4
 - DRC
 - More example
- Normalization

DRC: example

\[
\begin{align*}
\text{Sailors} & : (\text{sid}, \text{sname}, \text{rating}, \text{age}) \\
\text{Boats} & : (\text{bid}, \text{bname}, \text{color}) \\
\text{Reserves} & : (\text{sid}, \text{bid}, \text{day})
\end{align*}
\]

• Find the name and age of all sailors with a rating above 7

TRC:

\[
\{ P \mid \exists S \in \text{Sailors} (S.\text{rating} > 7 \land P.\text{name} = S.\text{name} \land P.\text{age} = S.\text{age}) \}
\]

DRC:

\[
\{<N, A> \mid \exists I, N, T, A \in \text{Sailors} \land T > 7\}
\]

• Variables are now domain variables
• We will use use TRC
 - both are equivalent

More Examples: RC

- The famous “Drinker-Beer-Bar” example!

Drinker Category 1

\[
\begin{align*}
\text{Likes} & : (\text{drinker, beer}) \\
\text{Frequents} & : (\text{drinker, bar}) \\
\text{Serves} & : (\text{bar, beer})
\end{align*}
\]

Find drinkers that frequent some bar that serves some beer they like.

UNDERSTAND THE DIFFERENCE IN ANSWERS FOR ALL FOUR DRINKERS

Drinker Category 1

Find drinkers that frequent some bar that serves some beer they like.

\[Q(x) = \exists y. \exists z. \text{Frequents}(x, y) \land \text{Serves}(y, z) \land \text{Likes}(x, z) \]

A shortcut for:

\[\{ x | \exists y \in \text{Frequents} \land \exists z \in \text{Serves} \land \exists w \in \text{Likes} (T.drinker = x.drinker \land T.bar = Z.bar \land W.beer = \ldots .) \} \]

The difference is that in the first one, one variable = one attribute
in the second one, one variable = one tuple (Tuple RC)
Both are equivalent and feel free to use the one that is convenient to you

Drinker Category 2/3/4

Find drinkers that frequent some bar that serves some beer they like.

\[Q(x) = \exists y. \exists z. \text{Frequents}(x, y) \land \text{Serves}(y, z) \land \text{Likes}(x, z) \]

Find drinkers that frequent only bars that serves some beer they like.

\[Q(x) = \]

Find drinkers that frequent some bar that serves only beers they like.

\[Q(x) = \]

Find drinkers that frequent only bars that serves only beer they like.

\[Q(x) = \]

Why should we care about RC

- RC is declarative, like SQL, and unlike RA (which is operational)
- Gives foundation of database queries in first-order logic
 - you cannot express all aggregates in RC, e.g. cardinality of a relation or sum (possible in extended RA and SQL)
 - still can express conditions like "at least two tuples" (or any constant)
- RC expression may be much simpler than SQL queries
 - and easier to check for correctness than SQL
 - power to use \(\land \) and \(\lor \) ->
 - then you can systematically go to a "correct" SQL query

From RC to SQL

Query: Find drinkers that like some beer (so much) that they frequent all bars that serve it

\[Q(x) = \exists y. \exists z. (\text{Likes}(x, y) \land \text{Serves}(z, y) \Rightarrow \text{Frequents}(x, z)) \]

Step 1: Replace \(\land \) with \(\lor \) using de Morgan’s Laws

\[\neg Q(x) = \exists y. \exists z. (\text{Likes}(x, y) \lor \text{Serves}(z, y) \land \neg \text{Frequents}(x, z)) \]

Step 2: Translate into SQL

```
SELECT DISTINCT L.drinker
FROM Likes L
WHERE not exists (SELECT S.bar
FROM Serves S
WHERE L.beer=S.beer
AND not exists (SELECT * FROM Frequents F
WHERE F.drinker=L.drinker
AND F.bar=S.bar))
```
Summary

- You learnt three query languages for the Relational DB model
 - SQL
 - RA
 - RC

- All have their own purposes

- You should be able to write a query in all three languages and convert from one to another
 - However, you have to be careful, not all “valid” expressions in one may be expressed in another
 - \(\{ s \mid s \notin S \} \) – infinitely many tuples – an "unsafe" query
 - More when we do “Datalog”, also see Ch. 4.4 in [RG]

Where are we now?

We learnt

- Relational Model and Query Languages
 - SQL, RA, RC
 - Postgres (DBMS)
 - XML (overview)

- HW1

Next

- Database Normalization
 - (for good schema design)

Reading Material

- Database normalization
 - [RG] Chapter 19.1 to 19.5, 19.6.1, 19.8 (overview)
 - [GUW] Chapter 3

Acknowledgement:

- The following slides have been created adapting the instructor material of the [RG] book provided by the authors
 - Dr. Ramakrishnan and Dr. Gehrke.
- Some slides have been adapted from slides by Prof. Jun Yang.

What will we learn?

- What goes wrong if we have redundant info in a database?
- Why and how should you refine a schema?
- Functional Dependencies – a new kind of integrity constraints (IC)
- Normal Forms
- How to obtain those normal forms

Example

The list of hourly employees in an organization

<table>
<thead>
<tr>
<th>ssn</th>
<th>name</th>
<th>lot</th>
<th>rating</th>
<th>hourly-wage</th>
<th>hours-worked</th>
</tr>
</thead>
<tbody>
<tr>
<td>111-11-1111</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>222-22-2222</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>333-33-3333</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>444-44-4444</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>555-55-5555</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

- key = SSN
Decompositions should be used judiciously

1. Do we need to decompose a relation?
 - Several normal forms
 - If a relation is not in one of them, may need to decompose further

2. What are the problems with decomposition?
Functional Dependencies (FDs)

- An FD is a statement about all allowable relations
 - Must be identified based on semantics of application
 - Given some allowable instance \(r_1 \) of \(R \), we can check if it violates some FD \(f \), but we cannot tell if \(f \) holds over \(R \)
- \(K \) is a candidate key for \(R \) means that \(K \rightarrow R \)
 - denoting \(R = \) all attributes of \(R \) too
 - However, \(S \rightarrow R \) does not require \(S \) to be minimal
 - e.g. \(S \) can be a superkey

Example

- Consider relation obtained from Hourly_Emps:
 - Hourly_Emps (ssn, name, lot, rating, hourly_wage, hours_worked)
- Notation: We will denote a relation schema by listing the attributes: SNLRWH
 - Basically the set of attributes (S,N,L,R,W,H)
 - here first letter of each attribute

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>b1</td>
<td>c1</td>
<td>d1</td>
</tr>
<tr>
<td>a1</td>
<td>b1</td>
<td>c1</td>
<td>d2</td>
</tr>
<tr>
<td>a1</td>
<td>b2</td>
<td>c2</td>
<td>d1</td>
</tr>
<tr>
<td>a2</td>
<td>b1</td>
<td>c3</td>
<td>d1</td>
</tr>
</tbody>
</table>

 Possible FDs:
 - ssn is the key: \(S \rightarrow SNLRWH \)
 - rating determines hourly_wages: \(R \rightarrow W \)

Armstrong’s Axioms

- \(X, Y, Z \) are sets of attributes
 - Reflexivity: If \(X \supseteq Y \), then \(X \rightarrow Y \)
 - Augmentation: If \(X \rightarrow Y \), then \(XZ \rightarrow YZ \) for any \(Z \)
 - Transitivity: If \(X \rightarrow Y \) and \(Y \rightarrow Z \), then \(X \rightarrow Z \)

 Apply these rules on \(AB \rightarrow C \) and check

Additional Rules

- Follow from Armstrong’s Axioms
 - Union: If \(X \rightarrow Y \) and \(X \rightarrow Z \), then \(X \rightarrow YZ \)
 - Decomposition: If \(X \rightarrowYZ \), then \(X \rightarrow Y \) and \(X \rightarrow Z \)

Closure of a set of FDs

- Given some FDs, we can usually infer additional FDs:
 - SSN → DEPT, and DEPT → LOT implies SSN → LOT
 - An FD \(f \) is implied by a set of FDs \(F \) if \(f \) holds whenever all FDs in \(F \) hold.

 \(F^* \) = closure of \(F \) is the set of all FDs that are implied by \(F \)
To check if an FD belongs to a closure

- Computing the closure of a set of FDs can be expensive
 - Size of closure can be exponential in #attributes

- Typically, we just want to check if a given FD $X \rightarrow Y$ is in the closure of a set of FDs F

- No need to compute F^+
 1. Compute attribute closure of X (denoted X^+) wrt F:
 - Set of all attributes A such that $X \rightarrow A$ is in F^+
 2. Check if Y is in X^+

Computing Attribute Closure

Algorithm:

- $\text{closure} = X$
- Repeat until no change
 - if there is an FD $U \rightarrow V$ in F such that $U \subseteq \text{closure}$, then $\text{closure} = \text{closure} \cup V$

- Does $F = \{A \rightarrow B, B \rightarrow C, C \rightarrow D \rightarrow E\}$ imply $A \rightarrow E$?
 - i.e. is $A \rightarrow E$ in the closure F^+? Equivalently, is E in A^+?

Normal Forms

- Question: given a schema, how to decide whether any schema refinement is needed at all?

- If a relation is in a certain normal forms, it is known that certain kinds of problems are avoided/minimized

- Helps us decide whether decomposing the relation is something we want to do

FDs play a role in detecting redundancy

Example

- Consider a relation R with 3 attributes, ABC
 - No FDs hold: There is no redundancy here – no decomposition needed
 - Given $A \rightarrow B$: Several tuples could have the same A value, and if so, they’ll all have the same B value – redundancy – decomposition may be needed if A is not a key

- Intuitive idea:
 - if there is any non-key dependency, e.g. $A \rightarrow B$, decompose!

Boyce-Codd Normal Form (BCNF)

- Relation R with FDs F is in BCNF if, for all $X \rightarrow A$ in F
 - $A \in X$ (called a trivial FD), or
 - X contains a key for R
 - i.e. X is a superkey

Definitions next
Third Normal Form (3NF)

- Relation R with FDs F is in 3NF if, for all $X \rightarrow A$ in F:
 - $A \in X$ (called a trivial FD), or
 - X contains a key for R, or
 - A is part of some key for R.

- Minimality of a key is crucial in third condition in 3NF
 - every attribute is part of some superkey ($= \{ \text{set of all attributes} \}$)

- If R is in BCNF, obviously in 3NF
- If R is in 3NF, some redundancy is possible
 - when $X \rightarrow A$ and A is part of a key (not allowed in BCNF)

Decomposition of a Relation Schema

- Consider relation R contains attributes $A_1 \ldots A_n$
- A decomposition of R consists of replacing R by two or more relations such that “no attribute is lost” and “no new attribute appears”, i.e.
 - Each new relation schema contains a subset of the attributes of R
 - Every attribute of R appears as an attribute of one of the new relations
 - E.g., Can decompose SNLRWH into SNLRH and RW

- What are the potential problems with an arbitrary decomposition?

Lossless Join Decompositions

- Decomposition of R into X and Y is lossless-join w.r.t. a set of FDs F if, for every instance r that satisfies F: $\pi_X(r) \bowtie \pi_Y(r) = r$

Algorithm: Decomposition into BCNF

- Input: relation R with FDs F
- If $X \rightarrow Y$ violates BCNF, decompose R into $R - Y$ and $X - Y$
 - Repeat until all new relations are in BCNF w.r.t. the given F

- NOTE: Need to consider all possible FDs that can be inferred from the current set of FDs (closure), not only the given ones!

- Gives a collection of relations that are
 - in BCNF
 - lossless join decomposition
- and guaranteed to terminate

Decomposition into BCNF (example)

- CSIDPQV, key C, $F = \{ JP \rightarrow C, SD \rightarrow P, J \rightarrow S \}$
 - To deal with $SD \rightarrow P$, decompose into $SDP, CSIDQV$.
 - To deal with $J \rightarrow S$, decompose $CSIDQV$ into JS and $CJDQV$

- Note:
 - several dependencies may cause violation of BCNF
 - The order in which we pick them may lead to very different sets of relations
 - there may be multiple correct decompositions

BCNF decomposition example

- $\text{UserJoinsGroup} (uid, uname, twitterid, gid, fromDate)$
- $\text{uid} \rightarrow \text{uname}, \text{twitterid}$
- $\text{uid, gid} \rightarrow \text{fromDate}$
Another example

\text{UserJoinsGroup} (\text{uid, uname, twitterid, gid, fromDate})

Recap

- Functional dependencies: a generalization of the key concept
- Non-key functional dependencies: a source of redundancy
- BCNF decomposition: a method for removing redundancies
 - BCNF decomposition is a lossless join decomposition
- BCNF: schema in this normal form has no redundancy due to FD’s

BCNF = no redundancies?

- User (uid, gid, place)
 - A user can belong to multiple groups
 - A user can register places she’s visited
 - Groups and places have nothing to do with other
 - FD’s?
 - BCNF?
 - Redundancies?

Multivalued dependencies

- A multivalued dependency (MVD) has the form
 \(X \rightarrow Y \), where \(X \) and \(Y \) are sets of attributes in a relation \(R \)
- \(X \rightarrow Y \) means that whenever two rows in \(R \) agree on all the attributes of \(X \), then we can swap their \(Y \) components and get two rows that are also in \(R \)

MVD examples

User (uid, gid, place)

- \(\text{uid} \rightarrow \text{gid} \)
- \(\text{uid} \rightarrow \text{place} \)
 - Intuition: given \(\text{uid} \), attributes \(\text{gid} \) and \(\text{place} \) are “independent”
- \(\text{uid}, \text{gid} \rightarrow \text{place} \)
 - Trivial: \(\text{LHS} \cup \text{RHS} = \text{all attributes of R} \)
- \(\text{uid}, \text{gid} \rightarrow \text{uid} \)
 - Trivial: \(\text{LHS} \supseteq \text{RHS} \)

Complete MVD + FD rules

- FD reflexivity, augmentation, and transitivity
- MVD complementation:
 - If \(X \rightarrow Y \), then \(X \rightarrow \text{attrs}(R) – X – Y \)
- MVD augmentation:
 - If \(X \rightarrow Y \) and \(V \subseteq W \), then \(XY \rightarrow YV \)
- MVD transitivity:
 - If \(X \rightarrow Y \) and \(Y \rightarrow Z \), then \(X \rightarrow Z – Y \)
- Replication (FD is MVD):
 - If \(X \rightarrow Y \), then \(X \rightarrow Y \)
- Coalescence:
 - If \(X \rightarrow Y \) and \(W \) is disjoint from \(Y \) such that \(W \rightarrow Z \), then \(X \rightarrow Z \)

Verify these yourself!
An elegant solution: “chase”

* Given a set of FD’s and MVD’s \(\mathcal{D} \), does another dependency \(d \) (FD or MVD) follow from \(\mathcal{D} \)?

* Procedure
 - Start with the premise of \(d \), and treat them as “seed” tuples in a relation
 - Apply the given dependencies in \(\mathcal{D} \) repeatedly
 - If we apply an FD, we infer equality of two symbols
 - If we apply an MVD, we infer more tuples
 - If we infer the conclusion of \(d \), we have a proof
 - Otherwise, if nothing more can be inferred, we have a counterexample

Proof by chase

* In \(R(A, B, C, D) \), does \(A \rightarrow B \) and \(B \rightarrow C \) imply that \(A \rightarrow C \)?

<table>
<thead>
<tr>
<th>Have:</th>
<th>Need:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \rightarrow B)</td>
<td>(a_1 b_1 c_1 d_1)</td>
</tr>
<tr>
<td>(A \rightarrow B)</td>
<td>(a_2 b_2 c_2 d_2)</td>
</tr>
<tr>
<td>(B \rightarrow C)</td>
<td>(b_1 c_2 d_1)</td>
</tr>
<tr>
<td>(B \rightarrow C)</td>
<td>(b_2 c_1 d_2)</td>
</tr>
</tbody>
</table>

Another proof by chase

* In \(R(A, B, C, D) \), does \(A \rightarrow B \) and \(B \rightarrow C \) imply that \(A \rightarrow C \)?

<table>
<thead>
<tr>
<th>Have:</th>
<th>Need:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \rightarrow B)</td>
<td>(a_1 b_1 c_1 d_1)</td>
</tr>
<tr>
<td>(A \rightarrow B)</td>
<td>(a_2 b_2 c_2 d_2)</td>
</tr>
<tr>
<td>(B \rightarrow C)</td>
<td>(b_1 c_2 d_1)</td>
</tr>
<tr>
<td>(B \rightarrow C)</td>
<td>(b_2 c_1 d_2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Have:</th>
<th>Need:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \rightarrow B)</td>
<td>(b_1 = b_2)</td>
</tr>
<tr>
<td>(B \rightarrow C)</td>
<td>(c_1 = c_2)</td>
</tr>
</tbody>
</table>

Counterexample by chase

* In \(R(A, B, C, D) \), does \(A \rightarrow BC \) and \(CD \rightarrow B \) imply that \(A \rightarrow B \)?

<table>
<thead>
<tr>
<th>Have:</th>
<th>Need:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \rightarrow BC)</td>
<td>(a_1 b_2 c_2 d_1)</td>
</tr>
<tr>
<td>(A \rightarrow BC)</td>
<td>(a_1 b_2 c_1 d_2)</td>
</tr>
<tr>
<td>(CD \rightarrow B)</td>
<td>(b_1 = b_2)</td>
</tr>
</tbody>
</table>

4NF decomposition algorithm

* A relation \(R \) is in Fourth Normal Form (4NF) if
 - For every non-trivial MVD \(X \rightarrow Y \) in \(R \), \(X \) is a superkey
 - That is, all FD’s and MVD’s follow from “key \(\rightarrow \) other attributes” (i.e., no MVD’s and no FD’s besides key functional dependencies)

* 4NF is stronger than BCNF
 - Because every FD is also a MVD

Counterexample by chase

<table>
<thead>
<tr>
<th>Have:</th>
<th>Need:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \rightarrow BC)</td>
<td>(a_1 b_2 c_2 d_1)</td>
</tr>
<tr>
<td>(A \rightarrow BC)</td>
<td>(a_1 b_2 c_1 d_2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Have:</th>
<th>Need:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A \rightarrow BC)</td>
<td>(b_1 = b_2)</td>
</tr>
</tbody>
</table>

In general, with both MVD’s and FD’s, chase can generate both new tuples and new equalities

4NF

* A relation \(R \) is in Fourth Normal Form (4NF) if
 - For every non-trivial MVD \(X \rightarrow Y \) in \(R \) where \(X \) is not a superkey
 - Decompose \(R \) into \(R_1 \) and \(R_2 \), where
 - \(R_1 \) has attributes \(X \cup Y \)
 - \(R_2 \) has attributes \(X \cup Z \) (where \(Z \) contains \(R \) attributes not in \(X \) or \(Y \))

* Repeat until all relations are in 4NF

* 4NF is stronger than BCNF
 - Because every FD is also a MVD

4NF decomposition algorithm

* Find a 4NF violation
 - A non-trivial MVD \(X \rightarrow Y \) in \(R \) where \(X \) is not a superkey
 - Decompose \(R \) into \(R_1 \) and \(R_2 \), where
 - \(R_1 \) has attributes \(X \cup Y \)
 - \(R_2 \) has attributes \(X \cup Z \) (where \(Z \) contains \(R \) attributes not in \(X \) or \(Y \))

* Repeat until all relations are in 4NF

* 4NF is stronger than BCNF
 - Because every FD is also a MVD

* Any decomposition on a 4NF violation is lossless
4NF decomposition example

<table>
<thead>
<tr>
<th>User (uid, gid, place)</th>
<th>4NF violation: uid ↠ gid</th>
</tr>
</thead>
<tbody>
<tr>
<td>uid: 142, gid: dps, place: Springfield</td>
<td></td>
</tr>
<tr>
<td>uid: 142, gid: dps, place: Australia</td>
<td></td>
</tr>
<tr>
<td>uid: 456, gid: abc, place: Springfield</td>
<td></td>
</tr>
<tr>
<td>uid: 456, gid: abc, place: Morocco</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Member (uid, gid)</th>
<th>4NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>uid: 142, gid: dps</td>
<td></td>
</tr>
<tr>
<td>uid: 456, gid: abc</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Visited (uid, place)</th>
<th>4NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>uid: 142, place: Springfield</td>
<td></td>
</tr>
<tr>
<td>uid: 142, place: Australia</td>
<td></td>
</tr>
<tr>
<td>uid: 456, place: Springfield</td>
<td></td>
</tr>
<tr>
<td>uid: 456, place: Morocco</td>
<td></td>
</tr>
</tbody>
</table>

Other kinds of dependencies and normal forms

- Dependency preserving decompositions
- Join dependencies
- Inclusion dependencies
- 5NF
- See book if interested (not covered in class)

Summary

- **Philosophy behind BCNF, 4NF:**

 Data should depend on the key, the whole key, and nothing but the key!

 — You could have multiple keys though

- **Redundancy is not desired typically**

 — not always, mainly due to performance reasons

- **Functional/multivalued dependencies — capture redundancy**

- **Decompositions — eliminate dependencies**

- **Normal forms**

 — Guarantees certain non-redundancy

 — 3NF, BCNF, and 4NF

- **Lossless join**

- **How to decompose into BCNF, 4NF**

- **Chase**