CPS 570: Artificial Intelligence

Logic

Instructor: Vincent Conitzer
Logic and AI

• Would like our AI to have knowledge about the world, and logically draw conclusions from it

• Search algorithms generate successors and evaluate them, but do not “understand” much about the setting

• Example question: is it possible for a chess player to have all her pawns and 2 queens?
 – Search algorithm could search through tons of states to see if this ever happens, but…
A story

• You roommate comes home; he/she is completely wet

• You know the following things:
 – Your roommate is wet
 – If your roommate is wet, it is because of rain, sprinklers, or both
 – If your roommate is wet because of sprinklers, the sprinklers must be on
 – If your roommate is wet because of rain, your roommate must not be carrying the umbrella
 – The umbrella is not in the umbrella holder
 – If the umbrella is not in the umbrella holder, either you must be carrying the umbrella, or your roommate must be carrying the umbrella
 – You are not carrying the umbrella

• Can you conclude that the sprinklers are on?

• Can AI conclude that the sprinklers are on?
Knowledge base for the story

- RoommateWet
- RoommateWet => (RoommateWetBecauseOfRain OR RoommateWetBecauseOfSprinklers)
- RoommateWetBecauseOfSprinklers => SprinklersOn
- RoommateWetBecauseOfRain => NOT(RoommateCarryingUmbrella)
- UmbrellaGone
- UmbrellaGone => (YouCarryingUmbrella OR RoommateCarryingUmbrella)
- NOT(YouCarryingUmbrella)
Syntax

• What do well-formed sentences in the knowledge base look like?

• A BNF grammar:

 • Symbol → P, Q, R, …, RoommateWet, …
 • Sentence → True | False | Symbol | NOT(Sentence) | (Sentence AND Sentence) | (Sentence OR Sentence) | (Sentence => Sentence)

• We will drop parentheses sometimes, but formally they really should always be there
Semantics

• A model specifies which of the proposition symbols are true and which are false
• Given a model, I should be able to tell you whether a sentence is true or false

• Truth table defines semantics of operators:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>NOT(a)</th>
<th>a AND b</th>
<th>a OR b</th>
<th>a => b</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>

• Given a model, can compute truth of sentence recursively with these
Caveats

- TwoIsAnEvenNumber OR ThreeIsAnOddNumber is true (not exclusive OR)
- TwoIsAnOddNumber => ThreeIsAnEvenNumber is true (if the left side is false it’s always true)

All of this is assuming those symbols are assigned their natural values…
Tautologies

- A sentence is a **tautology** if it is true for any setting of its propositional symbols

\[
\begin{array}{|c|c|c|c|c|}
\hline
P & Q & P \text{ OR } Q & \text{NOT}(P) \text{ AND NOT}(Q) & (P \text{ OR } Q) \text{ OR } (\text{NOT}(P) \text{ AND NOT}(Q)) \\
\hline
\text{false} & \text{false} & \text{false} & \text{true} & \text{true} \\
\text{false} & \text{true} & \text{true} & \text{false} & \text{true} \\
\text{true} & \text{false} & \text{true} & \text{false} & \text{true} \\
\text{true} & \text{true} & \text{true} & \text{false} & \text{true} \\
\hline
\end{array}
\]

- \((P \text{ OR } Q) \text{ OR } (\text{NOT}(P) \text{ AND NOT}(Q))\) is a tautology
Is this a tautology?

- \((P \implies Q) \lor (Q \implies P)\)
Logical equivalences

- Two sentences are **logically equivalent** if they have the same truth value for every setting of their propositional variables.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P OR Q</th>
<th>NOT(NOT(P) AND NOT(Q))</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>

- P OR Q and NOT(NOT(P) AND NOT(Q)) are logically equivalent.
- Tautology = logically equivalent to True.
Famous logical equivalences

- \((a \lor b) \equiv (b \lor a)\) *commutativity*
- \((a \land b) \equiv (b \land a)\) *commutativity*
- \(((a \land b) \land c) \equiv (a \land (b \land c))\) *associativity*
- \(((a \lor b) \lor c) \equiv (a \lor (b \lor c))\) *associativity*
- \(\neg(\neg a) \equiv a\) *double-negation elimination*
- \((a \rightarrow b) \equiv (\neg b \rightarrow \neg a)\) *contraposition*
- \((a \rightarrow b) \equiv (\neg a \lor b)\) *implication elimination*
- \(\neg(a \land b) \equiv (\neg a \lor \neg b)\) *De Morgan*
- \(\neg(a \lor b) \equiv (\neg a \land \neg b)\) *De Morgan*
- \((a \land (b \lor c)) \equiv ((a \land b) \lor (a \land c))\) *distributivity*
- \((a \lor (b \land c)) \equiv ((a \lor b) \land (a \lor c))\) *distributivity*
Inference

• We have a knowledge base of things that we know are true
 – RoommateWetBecauseOfSprinklers
 – RoommateWetBecauseOfSprinklers => SprinklersOn

• Can we conclude that SprinklersOn?
• We say SprinklersOn is **entailed** by the knowledge base if, for every setting of the propositional variables for which the knowledge base is true, SprinklersOn is also true

<table>
<thead>
<tr>
<th>RWBOS</th>
<th>SprinklersOn</th>
<th>Knowledge base</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>

• SprinklersOn is entailed!
Simple algorithm for inference

• Want to find out if sentence a is entailed by knowledge base...

• For every possible setting of the propositional variables,
 – If knowledge base is true and a is false, return false

• Return true

• Not very efficient: $2^{\#\text{propositional variables}}$ settings
Inconsistent knowledge bases

• Suppose we were careless in how we specified our knowledge base:

• PetOfRoommateIsABird => PetOfRoommateCanFly
• PetOfRoommateIsAPenguin => PetOfRoommateIsABird
• PetOfRoommateIsAPenguin => NOT(PetOfRoommateCanFly)
• PetOfRoommateIsAPenguin

• No setting of the propositional variables makes all of these true

• Therefore, technically, this knowledge base implies anything
• TheMoonIsMadeOfCheese
Reasoning patterns

• Obtain new sentences directly from some other sentences in knowledge base according to reasoning patterns

• If we have sentences \(a \) and \(a \Rightarrow b \), we can correctly conclude the new sentence \(b \)
 – This is called modus ponens

• If we have \(a \) AND \(b \), we can correctly conclude \(a \)

• All of the logical equivalences from before also give reasoning patterns
Formal proof that the sprinklers are on

1) RoommateWet
2) RoommateWet => (RoommateWetBecauseOfRain OR RoommateWetBecauseOfSprinklers)
3) RoommateWetBecauseOfSprinklers => SprinklersOn
4) RoommateWetBecauseOfRain => NOT(RoommateCarryingUmbrella)
5) UmbrellaGone
6) UmbrellaGone => (YouCarryingUmbrella OR RoommateCarryingUmbrella)
7) NOT(YouCarryingUmbrella)
8) YouCarryingUmbrella OR RoommateCarryingUmbrella (modus ponens on 5 and 6)
9) NOT(YouCarryingUmbrella) => RoommateCarryingUmbrella (equivalent to 8)
10) RoommateCarryingUmbrella (modus ponens on 7 and 9)
11) NOT(NOT(RoommateCarryingUmbrella)) (equivalent to 10)
12) NOT(NOT(RoommateCarryingUmbrella))) => NOT(RoommateWetBecauseOfRain) (equivalent to 4 by contraposition)
13) NOT(RoommateWetBecauseOfRain) (modus ponens on 11 and 12)
14) RoommateWetBecauseOfRain OR RoommateWetBecauseOfSprinklers (modus ponens on 1 and 2)
15) NOT(RoommateWetBecauseOfRain) => RoommateWetBecauseOfSprinklers (equivalent to 14)
16) RoommateWetBecauseOfSprinklers (modus ponens on 13 and 15)
17) SprinklersOn (modus ponens on 16 and 3)
Reasoning about penguins

1) PetOfRoommateIsABird => PetOfRoommateCanFly
2) PetOfRoommateIsAPenguin => PetOfRoommateIsABird
3) PetOfRoommateIsAPenguin => NOT(PetOfRoommateCanFly)
4) PetOfRoommateIsAPenguin
5) PetOfRoommateIsABird (modus ponens on 4 and 2)
6) PetOfRoommateCanFly (modus ponens on 5 and 1)
7) NOT(PetOfRoommateCanFly) (modus ponens on 4 and 3)
8) NOT(PetOfRoommateCanFly) => FALSE (equivalent to 6)
9) FALSE (modus ponens on 7 and 8)
10) FALSE => TheMoonIsMadeOfCheese (tautology)
11) TheMoonIsMadeOfCheese (modus ponens on 9 and 10)
Systematic inference?

- General strategy: if we want to see if sentence \(a \) is entailed, add \(\neg(a) \) to the knowledge base and see if it becomes inconsistent (we can derive a contradiction).

- Any knowledge base can be written as a single formula in conjunctive normal form:

 \[
 \text{RoommateWet} \Rightarrow (\text{RoommateWetBecauseOfRain} \lor \text{RoommateWetBecauseOfSprinklers})
 \]

 becomes

 \[
 (\neg(\text{RoommateWet}) \lor \text{RoommateWetBecauseOfRain} \lor \text{RoommateWetBecauseOfSprinklers})
 \]

- Formula for modified knowledge base is satisfiable if and only if sentence \(a \) is not entailed.
Resolution

• **Unit resolution**: if we have

• \(l_1 \lor l_2 \lor \ldots \lor l_k \)

and

• \(\neg(l_i) \)

we can conclude

• \(l_1 \lor l_2 \lor \ldots \lor l_{i-1} \lor l_{i+1} \lor \ldots \lor l_k \)

• Basically modus ponens
Resolution…

• **General resolution**: if we have

 \[l_1 \lor l_2 \lor \ldots \lor l_k \]

 and

 \[m_1 \lor m_2 \lor \ldots \lor m_n \]

 where for some \(i, j \), \(l_i = \text{NOT}(m_j) \)

 we can conclude

 \[l_1 \lor l_2 \lor \ldots \lor l_{i-1} \lor l_{i+1} \lor \ldots \lor l_k \lor m_1 \lor m_2 \]

 \[\lor \ldots \lor m_{j-1} \lor m_{j+1} \lor \ldots \lor m_n \]

• Same literal may appear multiple times; remove those
Resolution algorithm

• Given formula in conjunctive normal form, repeat:
 • Find two clauses with complementary literals,
 • Apply resolution,
 • Add resulting clause (if not already there)
 • If the empty clause results, formula is not satisfiable
 – Must have been obtained from P and NOT(P)
 • Otherwise, if we get stuck (and we will eventually),
 the formula is guaranteed to be satisfiable (proof in a couple of slides)
Example

• Our knowledge base:
 – 1) RoommateWetBecauseOfSprinklers
 – 2) NOT(RoommateWetBecauseOfSprinklers) OR SprinklersOn

• Can we infer SprinklersOn? We add:
 – 3) NOT(SprinklersOn)

• From 2) and 3), get
 – 4) NOT(RoommateWetBecauseOfSprinklers)

• From 4) and 1), get empty clause
If we get stuck, why is the formula satisfiable?

- Consider the final set of clauses C
- Construct satisfying assignment as follows:
 - Assign truth values to variables in order x_1, x_2, \ldots, x_n
 - If x_j is the last chance to satisfy a clause (i.e., all the other variables in the clause came earlier and were set the wrong way), then set x_j to satisfy it
 - Otherwise, doesn’t matter how it’s set
 - Suppose this fails (for the first time) at some point, i.e., x_j must be set to true for one last-chance clause and false for another
 - These two clauses would have resolved to something involving only up to x_{j-1} (not to the empty clause, of course), which must be satisfied
 - But then one of the two clauses must also be satisfied - contradiction
Special case: Horn clauses

- Horn clauses are implications with only positive literals
- \(x_1 \text{ AND } x_2 \text{ AND } x_4 \Rightarrow x_3 \text{ AND } x_6 \)
- \(\text{TRUE} \Rightarrow x_1 \)
- Try to figure out whether some \(x_j \) is entailed
- Simply follow the implications (modus ponens) as far as you can, see if you can reach \(x_j \)
- \(x_j \) is entailed if and only if it can be reached (can set everything that is not reached to false)
- Can implement this more efficiently by maintaining, for each implication, a count of how many of the left-hand side variables have been reached