Design Theory and Normalization

What will we learn?

- What goes wrong if we have redundant info in a database?
- Why and how should you refine a schema?
- Functional Dependencies – a new kind of integrity constraints (IC)
- Normal Forms
- How to obtain those normal forms

Reading Material

- Database normalization
 - [RG] Chapter 19.1 to 19.5, 19.6.1, 19.8 (overview)
 - [GUW] Chapter 3

Example

The list of hourly employees in an organization

<table>
<thead>
<tr>
<th>ssn</th>
<th>name</th>
<th>lot (L)</th>
<th>rating (R)</th>
<th>hourly-wage (W)</th>
<th>hours-worked (H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>111-11-1111</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>222-22-2222</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>333-33-3333</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>444-44-4444</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>555-55-5555</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

- key = SSN
Why is redundancy bad?

The list of hourly employees in an organization

<table>
<thead>
<tr>
<th>ssn ($)</th>
<th>name (N)</th>
<th>lot (L)</th>
<th>rating (R)</th>
<th>hourly-wage (W)</th>
<th>hours-worked (H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>111-11-1111</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>222-22-2222</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>333-33-3333</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>444-44-4444</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>555-55-5555</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

• key = SSN
• Suppose for a given rating, there is only one hourly_wage value
• Redundancy in the table
• Why is redundancy bad?

Example

The list of hourly employees in an organization

<table>
<thead>
<tr>
<th>ssn ($)</th>
<th>name (N)</th>
<th>lot (L)</th>
<th>rating (R)</th>
<th>hourly-wage (W)</th>
<th>hours-worked (H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>111-11-1111</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>222-22-2222</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>333-33-3333</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>444-44-4444</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>555-55-5555</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

Why is redundancy bad?

The list of hourly employees in an organization

<table>
<thead>
<tr>
<th>ssn ($)</th>
<th>name (N)</th>
<th>lot (L)</th>
<th>rating (R)</th>
<th>hourly-wage (W)</th>
<th>hours-worked (H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>111-11-1111</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>222-22-2222</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>333-33-3333</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>444-44-4444</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>555-55-5555</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

Nulls may or may not help

The list of hourly employees in an organization

<table>
<thead>
<tr>
<th>ssn ($)</th>
<th>name (N)</th>
<th>lot (L)</th>
<th>rating (R)</th>
<th>hourly-wage (W)</th>
<th>hours-worked (H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>111-11-1111</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>222-22-2222</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>333-33-3333</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>444-44-4444</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>555-55-5555</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>
Decompositions should be used judiciously

1. Do we need to decompose a relation?
 - Several normal forms
 - If a relation is not in one of them, may need to decompose further

2. What are the problems with decomposition?
 - Lossless joins (soon)
 - Performance issues -- decomposition may both
 • help performance (for updates, some queries accessing part of data), or
 • hurt performance (new joins may be needed for some queries)

Functional Dependencies (FDs)

- A functional dependency (FD) \(X \rightarrow Y \) holds over relation \(R \) if, for every allowable instance \(r \) of \(R \):
 - i.e., given two tuples in \(r \), if the \(X \) values agree, then the \(Y \) values must also agree
 - \(X \) and \(Y \) are sets of attributes
 - \(t_1 \epsilon r, t_2 \epsilon r, \Pi_X(t_1) = \Pi_X(t_2) \) implies \(\Pi_Y(t_1) = \Pi_Y(t_2) \)

Example

<table>
<thead>
<tr>
<th>ssn</th>
<th>name</th>
<th>lot</th>
<th>rating</th>
<th>hourly-waged</th>
<th>hours-worked</th>
</tr>
</thead>
<tbody>
<tr>
<td>111-11-1111</td>
<td>Attishoo</td>
<td>48</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>222-22-2222</td>
<td>Smiley</td>
<td>22</td>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>333-33-3333</td>
<td>Smethurst</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>30</td>
</tr>
<tr>
<td>444-44-4444</td>
<td>Guldu</td>
<td>35</td>
<td>5</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>555-55-5555</td>
<td>Madayan</td>
<td>35</td>
<td>8</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

Lossless joins

- A join is lossless if the \(\Pi_X(t_1) = \Pi_X(t_2) \) implies \(t_1 = t_2 \)

Normal Forms

- 1NF: Atomic values (e.g., \(\text{ssn}, \text{name}, \text{lot}, \text{rating} \))
- 2NF: \(X \rightarrow Y \), but we can check if it violates some FD, but we cannot tell if \(f \) holds over \(R \)
- 3NF: \(X \rightarrow Y \), but we cannot tell if \(f \) holds over \(R \)
- BCNF: \(X \rightarrow Y \), but we cannot tell if \(f \) holds over \(R \)
- 4NF: \(X \rightarrow Y \), but we cannot tell if \(f \) holds over \(R \)
- 5NF: \(X \rightarrow Y \), but we cannot tell if \(f \) holds over \(R \)

Summary: Redundancy

- Solution?
 - decomposition of schema

Functional Dependencies (FDs)

- An FD is a statement about all allowable relations
 - Must be identified based on semantics of application
 - Given some allowable instance \(r1 \) of \(R \), we can check if it violates some FD, but we cannot tell if \(f \) holds over \(R \)
- \(K \) is a candidate key for \(R \) means that \(K \rightarrow R \)
 - denoting \(R \) = all attributes of \(R \) too
 - However, \(S \rightarrow R \) does not require \(S \) to be minimal
 - e.g., \(S \) can be a superkey
Example

- Consider relation obtained from Hourly_Emps:
 - Hourly_Emps (ssn, name, lot, rating, hourly_wage, hours_worked)

Notation: We will denote a relation schema by listing the attributes: SNLRWH
- Basically the set of attributes {S,N,L,R,W,H}
- here first letter of each attribute

FDs on Hourly_Emps:
- ssn is the key: S → SNLRWH
- rating determines hourly_wages: R → W

Armstrong’s Axioms

- X, Y, Z are sets of attributes

 - Reflexivity: If X ⊆ Y, then X → Y
 - Augmentation: If X → Y, then XZ → YZ for any Z
 - Transitivity: If X → Y and Y → Z, then X → Z

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>b1</td>
<td>c1</td>
<td>d1</td>
</tr>
<tr>
<td>a1</td>
<td>b1</td>
<td>c1</td>
<td>d2</td>
</tr>
<tr>
<td>a1</td>
<td>b2</td>
<td>c2</td>
<td>d1</td>
</tr>
<tr>
<td>a2</td>
<td>b1</td>
<td>c3</td>
<td>d1</td>
</tr>
</tbody>
</table>

Apply these rules on AB → C and check

Armstrong’s Axioms

- X, Y, Z are sets of attributes

 - Reflexivity: If X ⊆ Y, then X → Y
 - Augmentation: If X → Y, then XZ → YZ for any Z
 - Transitivity: If X → Y and Y → Z, then X → Z

These are sound and complete inference rules for FDs
- sound: only generate FDs in F* for F
- complete: by repeated application of these rules, all FDs in F* will be generated

Additional Rules

- Follow from Armstrong’s Axioms

 - Union: If X → Y and X → Z, then X → YZ
 - Decomposition: If X → YZ, then X → Y and X → Z

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>b1</td>
<td>c1</td>
<td>d1</td>
</tr>
<tr>
<td>a1</td>
<td>b1</td>
<td>c1</td>
<td>d2</td>
</tr>
<tr>
<td>a1</td>
<td>b2</td>
<td>c2</td>
<td>d1</td>
</tr>
<tr>
<td>a2</td>
<td>b1</td>
<td>c3</td>
<td>d1</td>
</tr>
</tbody>
</table>

A → B, A → C
A → BC
A → BC
A → B, A → C

Closure of a set of FDs

- Given some FDs, we can usually infer additional FDs:
 - SSN → DEPT, and DEPT → LOT implies SSN → LOT

- An FD f is implied by a set of FDs F if f holds whenever all FDs in F hold.

- F* = closure of F is the set of all FDs that are implied by F

To check if an FD belongs to a closure

- Computing the closure of a set of FDs can be expensive
 - Size of closure can be exponential in #attributes

- Typically, we just want to check if a given FD X → Y is in the closure of a set of FDs F

- No need to compute F*

1. Compute attribute closure of X (denoted X*) wrt F:
 - Set of all attributes A such that X → A is in F*

2. Check if Y is in X*
Computing Attribute Closure

Algorithm:
• closure = X
• Repeat until no change
 – if there is an FD U → V in F such that U ⊆ closure, then closure = closure ∪ V

• Does F = {A → B, B → C, C D → E} imply A → E?
 – i.e., is A → E in the closure F+? Equivalently, is E in A+?

FDs play a role in detecting redundancy

Example
• Consider a relation R with 3 attributes, ABC
 – No FDs hold: There is no redundancy here – no decomposition needed
 – Given A → B: Several tuples could have the same A value, and if so, they’ll all have the same B value – redundancy – decomposition may be needed if A is not a key

• Intuitive idea:
 – if there is any non-key dependency, e.g. A → B, decompose!

Boyce-Codd Normal Form (BCNF)

• Relation R with FDs F is in BCNF if, for all X → A in F
 – A ∈ X (called a trivial FD), or
 – X contains a key for R
 – i.e. X is a superkey

Next lecture: BCNF decomposition algorithm

Normal Forms

• Question: given a schema, how to decide whether any schema refinement is needed at all?
• If a relation is in a certain normal forms, it is known that certain kinds of problems are avoided/minimized
• Helps us decide whether decomposing the relation is something we want to do

FDs play a role in detecting redundancy

Example
• Consider a relation R with 3 attributes, ABC
 – No FDs hold: There is no redundancy here – no decomposition needed
 – Given A → B: Several tuples could have the same A value, and if so, they’ll all have the same B value – redundancy – decomposition may be needed if A is not a key

• Intuitive idea:
 – if there is any non-key dependency, e.g. A → B, decompose!

Boyce-Codd Normal Form (BCNF)

• Relation R with FDs F is in BCNF if, for all X → A in F
 – A ∈ X (called a trivial FD), or
 – X contains a key for R
 – i.e. X is a superkey

Next lecture: BCNF decomposition algorithm

Normal Forms

• Question: given a schema, how to decide whether any schema refinement is needed at all?
• If a relation is in a certain normal forms, it is known that certain kinds of problems are avoided/minimized
• Helps us decide whether decomposing the relation is something we want to do
Unnecessary decomposition

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Birthday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ralph</td>
<td>alphwiggum@gmail.com</td>
<td>1987-01-01</td>
</tr>
<tr>
<td>Lisa</td>
<td>lisasimpson@gmail.com</td>
<td>1988-02-02</td>
</tr>
<tr>
<td>Bart</td>
<td>bartjsimpson@gmail.com</td>
<td>1989-03-03</td>
</tr>
</tbody>
</table>

- Fine: join returns the original relation
- Unnecessary: no redundancy is removed; schema is more complicated (and uid is stored twice!)

CompSci 516:

Lossless join decomposition

- Decompose relation R into relations S and T
 - $\text{attrs}(R) = \text{attrs}(S) \cup \text{attrs}(T)$
 - $S = \pi_{\text{attrs}(S)}(R)$
 - $T = \pi_{\text{attrs}(T)}(R)$
- The decomposition is a lossless join decomposition if, given known constraints such as FD’s, we can guarantee that $R = S \bowtie T$

 - $R \subseteq S \bowtie T$ or $R \subseteq S \bowtie T$?
 - Any decomposition gives $R \subseteq S \bowtie T$ (why?)
 - A lossy decomposition is one with $R \not\subseteq S \bowtie T$

Loss? But I got more rows!

- “Loss” refers not to the loss of tuples, but to the loss of information
 - Or, the ability to distinguish different original relations

BCNF decomposition algorithm

- Find a BCNF violation
 - That is, a non-trivial FD $X \rightarrow Y$ in R where X is not a super key of R
- Decompose R into R_1 and R_2, where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y
- Repeat until all relations are in BCNF

- Also gives a lossless decomposition!

BCNF decomposition example - 1

- CSJDPQV, key C, $F = \{ J \rightarrow C, SD \rightarrow P, J \rightarrow S \}$
 - To deal with $SD \rightarrow P$, decompose into SDP, CSJDPQV.
 - To deal with $J \rightarrow S$, decompose CSJDPQV into JS and CJDPQV

- Is $JP \rightarrow C$ a violation of BCNF?

 - Note:
 - several dependencies may cause violation of BCNF
 - The order in which we pick them may lead to very different sets of relations
 - there may be multiple correct decompositions (can pick $J \rightarrow S$ first)
Recap

• Functional dependencies: a generalization of the key concept
• Non-key functional dependencies: a source of redundancy
• BCNF decomposition: a method for removing redundancies
 — BCNF decomposition is a lossless join decomposition
• BCNF: schema in this normal form has no redundancy due to FD’s

Multivalued dependencies

• A multivalued dependency (MVD) has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
• $X \rightarrow Y$ means that whenever two rows in R agree on all the attributes of X, then we can swap their Y components and get two rows that are also in R

BCNF decomposition example - 2

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

BCNF violation: uid → uname, twitterid

User (uid, uname, twitterid)

BCNF

Member (uid, gid, fromDate)

BCNF

BCNF decomposition example - 3

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

BCNF violation: twitterid → uid

Userid (twitterid, uid)

BCNF

UserJoinsGroup' (twitterid, uname, gid, fromDate)

BCNF

UserName (twitterid, uname)

BCNF

Member (twitterid, gid, fromDate)

BCNF

BCNF = no redundancy?

• User (uid, gid, place)
 — A user can belong to multiple groups
 — A user can register places she’s visited
 — Groups and places have nothing to do with other
 — FD’s?
 • None
 • BCNF?
 • Yes
 • Redundancies?
 • Tons!

User (uid, gid, place)

• uid → gid
• uid → place
 — Intuition: given uid, attributes gid and place are “independent”
• uid, gid → place
 — Trivial: LHS ∪ RHS = all attributes of R
• uid, gid → uid
 — Trivial: LHS ⊄ RHS

MVD examples
Complete MVD + FD rules

- FD reflexivity, augmentation, and transitivity
- MVD complementation: If $X \rightarrow Y$, then $X \rightarrow attr(R) - X - Y$
- MVD augmentation: If $X \rightarrow Y$ and $V \subseteq W$, then $XW \rightarrow YV$
- MVD transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z - Y$
- Replication (FD is MVD): If $X \rightarrow Y$, then $X \rightarrow Y$
- Coalescence: Try proving things using these?

If $X \rightarrow Y$ and $Z \subseteq Y$ and there is some W disjoint from Y such that $W \rightarrow Z$, then $X \rightarrow Z$

An elegant solution: “chase”

- Given a set of FD’s and MVD’s D, does another dependency d (FD or MVD) follow from D?
- Procedure
 - Start with the premise of d, and treat them as “seed” tuples in a relation
 - Apply the given dependencies in D repeatedly
 - If we apply an FD, we infer equality of two symbols
 - If we apply an MVD, we infer more tuples
 - If we infer the conclusion of d, we have a proof
 - Otherwise, if nothing more can be inferred, we have a counterexample

Proof by chase

- In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

<table>
<thead>
<tr>
<th>Have: $A \rightarrow B$</th>
<th>Need: $A \rightarrow C$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \rightarrow B$</td>
<td>$A \rightarrow C$</td>
</tr>
<tr>
<td>$a \rightarrow b$</td>
<td>$a \rightarrow b$</td>
</tr>
<tr>
<td>$b \rightarrow c_1$</td>
<td>$b \rightarrow c_1$</td>
</tr>
<tr>
<td>$b \rightarrow c_2$</td>
<td>$b \rightarrow c_2$</td>
</tr>
</tbody>
</table>

Another proof by chase

- In $R(A, B, C, D)$, does $A \rightarrow B$ and $B \rightarrow C$ imply that $A \rightarrow C$?

<table>
<thead>
<tr>
<th>Have: $A \rightarrow B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \rightarrow B$</td>
</tr>
<tr>
<td>$a \rightarrow b$</td>
</tr>
<tr>
<td>$b \rightarrow c_1$</td>
</tr>
<tr>
<td>$b \rightarrow c_2$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Need: $A \rightarrow C$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \rightarrow C$</td>
</tr>
<tr>
<td>$a \rightarrow b$</td>
</tr>
<tr>
<td>$b \rightarrow c_1$</td>
</tr>
<tr>
<td>$b \rightarrow c_2$</td>
</tr>
</tbody>
</table>

Counterexample by chase

- In $R(A, B, C, D)$, does $A \rightarrow BC$ and $CD \rightarrow B$ imply that $A \rightarrow B$?

<table>
<thead>
<tr>
<th>Have: $A \rightarrow BC$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \rightarrow BC$</td>
</tr>
<tr>
<td>$a \rightarrow b$</td>
</tr>
<tr>
<td>$b \rightarrow c_1$</td>
</tr>
<tr>
<td>$b \rightarrow c_2$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Need: $b_1 = b_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b_1 = b_2$</td>
</tr>
</tbody>
</table>

4NF

- A relation R is in Fourth Normal Form (4NF) if
 - For every non-trivial MVD $X \rightarrow Y$ in R, X is a superkey
 - That is, all FD’s and MVD’s follow from “key→ other attributes” (i.e., no MVD’s and no FD’s besides key functional dependencies)

- 4NF is stronger than BCNF
 - Because every FD is also a MVD
4NF decomposition algorithm

- Find a 4NF violation
 - A non-trivial MVD $X \rightarrow Y$ in R where X is not a superkey
- Decompose R into R_1 and R_2, where
 - R_1 has attributes $X \cup Y$
 - R_2 has attributes $X \cup Z$ (where Z contains R attributes not in X or Y)
- Repeat until all relations are in 4NF
- Almost identical to BCNF decomposition algorithm
- Any decomposition on a 4NF violation is lossless

4NF decomposition example

<table>
<thead>
<tr>
<th>UID</th>
<th>Place</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Springfield</td>
<td>dps</td>
</tr>
<tr>
<td>142</td>
<td>Australia</td>
<td>dps</td>
</tr>
<tr>
<td>456</td>
<td>Springfield</td>
<td>abc</td>
</tr>
<tr>
<td>456</td>
<td>Morocco</td>
<td>abc</td>
</tr>
<tr>
<td>456</td>
<td>Morocco</td>
<td>gov</td>
</tr>
<tr>
<td>456</td>
<td>Morocco</td>
<td>go</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Member (uid, gid)

Visited (uid, place)

4NF violation: $uid \rightarrow gid$

Other kinds of dependencies and normal forms

- Dependency preserving decompositions
- Join dependencies
- Inclusion dependencies
- 5NF, 3NF, 2NF
- See book if interested (not covered in class)

Summary

- Philosophy behind BCNF, 4NF:
 - Data should depend on the key, the whole key, and nothing but the key!
 - You could have multiple keys though
- Redundancy is not desired typically
 - not always, mainly due to performance reasons
- Functional/multivalued dependencies – capture redundancy
- Decompositions – eliminate dependencies
- Normal forms
 - Guarantees certain non-redundancy
 - BCNF, and 4NF
- Lossless join
- How to decompose into BCNF, 4NF
- Chase