Machine learning

Instructor: Vincent Conitzer
Why is learning important?

• So far we have assumed we know how the world works
 – Rules of queens puzzle
 – Rules of chess
 – Knowledge base of logical facts
 – Actions’ preconditions and effects
 – Probabilities in Bayesian networks, MDPs, POMDPs, …
 – Rewards in MDPs

• At that point “just” need to solve/optimize

• In the real world this information is often not immediately available

• AI needs to be able to learn from experience
Different kinds of learning…

- **Supervised learning:**
 - Someone gives us examples and the right answer (*label*) for those examples
 - We have to predict the right answer for unseen examples

- **Unsupervised learning:**
 - We see examples but get no feedback (no labels)
 - We need to find patterns in the data

- **Semi-supervised learning:**
 - Small amount of labeled data, large amount of unlabeled data

- **Reinforcement learning:**
 - We take actions and get rewards
 - Have to learn how to get high rewards
Example of supervised learning: classification

- We lend money to people
- We have to predict whether they will pay us back or not
- People have various (say, binary) features:
 - do we know their Address? do they have a Criminal record? high Income? Educated? Old? Unemployed?
- We see examples: (Y = paid back, N = not)

 +a, -c, +i, +e, +o, +u: Y

 -a, +c, -i, +e, -o, -u: N

 +a, -c, +i, -e, -o, -u: Y

 -a, -c, +i, +e, -o, -u: Y

 -a, +c, +i, -e, -o, -u: N

 -a, -c, +i, -e, -o, +u: Y

 +a, -c, -i, -e, +o, -u: N

 +a, +c, +i, -e, +o, -u: N

 -a, +c, +i, -e, +o, -u: N

- Next person is +a, -c, +i, -e, +o, -u. Will we get paid back?
Classification...

- We want some hypothesis h that predicts whether we will be paid back

 $+a, -c, +i, +e, +o, +u: Y$

 $-a, +c, -i, +e, -o, -u: N$

 $+a, -c, +i, -e, -o, -u: Y$

 $-a, -c, +i, +e, -o, -u: Y$

 $-a, +c, +i, -e, -o, -u: N$

 $-a, -c, +i, -e, -o, +u: Y$

 $+a, -c, -i, -e, +o, -u: N$

 $+a, +c, +i, -e, +o, -u: N$

- Lots of possible hypotheses: will be paid back if…
 - Income is high (*wrong on 2 occasions in training data*)
 - Income is high and no Criminal record (*always right in training data*)
 - (Address is known AND ((NOT Old) OR Unemployed)) OR ((NOT Address is known) AND (NOT Criminal Record)) (*always right in training data*)

- Which one seems best? Anything better?
Occam’s Razor

- Occam’s razor: simpler hypotheses tend to generalize to future data better
- Intuition: given limited training data,
 - it is likely that there is some complicated hypothesis that is not actually good but that happens to perform well on the training data
 - it is less likely that there is a simple hypothesis that is not actually good but that happens to perform well on the training data
 - There are fewer simple hypotheses
- Computational learning theory studies this in much more depth
Constructing a decision tree, one step at a time

Address was maybe not the best attribute to start with…
Starting with a different attribute

• Seems like a much better starting point than address
 – Each node almost completely uniform
 – Almost completely predicts whether we will be paid back
Different approach: nearest neighbor(s)

- Next person is -a, +c, -i, +e, -o, +u. Will we get paid back?
- Nearest neighbor: simply look at most similar example in the training data, see what happened there

 +a, -c, +i, +e, +o, +u: Y (distance 4)
 -a, +c, -i, +e, -o, -u: N (distance 1)
 +a, -c, +i, -e, -o, -u: Y (distance 5)
 -a, -c, +i, +e, -o, -u: Y (distance 3)
 -a, +c, +i, -e, -o, -u: N (distance 3)
 -a, -c, +i, -e, -o, +u: Y (distance 3)
 +a, -c, -i, -e, +o, -u: N (distance 5)
 +a, +c, +i, -e, +o, -u: N (distance 5)

- Nearest neighbor is second, so predict N
- k nearest neighbors: look at k nearest neighbors, take a vote
 - E.g., 5 nearest neighbors have 3 Ys, 2Ns, so predict Y
Another approach: perceptrons

- Place a weight on every attribute, indicating how important that attribute is (and in which direction it affects things)

 E.g., \(w_a = 1, w_c = -5, w_i = 4, w_e = 1, w_o = 0, w_u = -1 \)

 \[+a, -c, +i, +e, +o, +u: Y \text{ (score } 1+4+1+0-1 = 5 \) \]
 \[-a, +c, -i, +e, -o, -u: N \text{ (score } -5+1=-4 \) \]
 \[+a, -c, +i, -e, -o, -u: Y \text{ (score } 1+4=5 \) \]
 \[-a, -c, +i, +e, -o, -u: Y \text{ (score } 4+1=5 \) \]
 \[-a, +c, +i, -e, -o, -u: N \text{ (score } -5+4=-1 \) \]
 \[-a, -c, +i, -e, -o, +u: Y \text{ (score } 4-1=3 \) \]
 \[+a, -c, -i, -e, +o, -u: N \text{ (score } 1+0=1 \) \]
 \[+a, +c, +i, -e, +o, -u: N \text{ (score } 1-5+4+0=0 \) \]

- Need to set some threshold above which we predict to be paid back (say, 2)

- May care about combinations of things (nonlinearity) – generalization: neural networks
Reinforcement learning

- There are three routes you can take to work: A, B, C
- The times you took A, it took: 10, 60, 30 minutes
- The times you took B, it took: 32, 31, 34 minutes
- The time you took C, it took 50 minutes
- What should you do next?

- Exploration vs. exploitation tradeoff
 - Exploration: try to explore underexplored options
 - Exploitation: stick with options that look best now

- Reinforcement learning usually studied in MDPs
 - Take action, observe reward and new state
Bayesian approach to learning

- Assume we have a prior distribution over the long term behavior of A
 - With probability .6, A is a “fast route” which:
 - With prob. .25, takes 20 minutes
 - With prob. .5, takes 30 minutes
 - With prob. .25, takes 40 minutes
 - With probability .4, A is a “slow route” which:
 - With prob. .25, takes 30 minutes
 - With prob. .5, takes 40 minutes
 - With prob. .25, takes 50 minutes

- We travel on A once and see it takes 30 minutes
- \(P(A \text{ is fast} \mid \text{observation}) = \frac{P(\text{observation} \mid A \text{ is fast}) \cdot P(A \text{ is fast})}{P(\text{observation})} = \frac{.5 \cdot .6}{(.5 \cdot .6 + .25 \cdot .4)} = \frac{.3}{(.3 + .1)} = .75 \)
- Convenient approach for decision theory, game theory
Learning in game theory

• Like 2/3 of average game
• Very tricky because other agents learn at the same time
• From one agent’s perspective, the environment is changing
 – Taking the average of past observations may not be good idea