Key Lemma:

- Given a subset of edges \(F \), suppose \(F \) is a subset of edges of a minimum spanning tree \(T \). Pick any cut \((S, \overline{S})\) that does not intersect with \(F \), let \(e \) be an edge with minimum cost in this cut \((S, \overline{S})\) then \(F \cup \{e\} \) is a subset of edges in a minimum spanning tree \(T' \).

\((T'\) may not be equal to \(T \))

Proof: in case 1, \(e \) is actually an edge in \(T \), this case is easy because \(F \cup \{e\} \subseteq T \), can choose \(T' = T \).

in case 2, \(e \) is not an edge in \(T \).

adding \(e \) to \(T \) will form a cycle, call it \(C \).

we know cycle \(C \) must intersect with cut \((S, \overline{S})\).

in an even number of edges.

so there must be another edge \(e' \in C \), \(e' \) also crosses cut \((S, \overline{S})\).

we will swap \(e \) and \(e' \).

define \(T' = (T \setminus \{e\}) \cup \{e'\} \).

\[
\text{cost}(T') = \text{cost}(T) - w(e') + w(e)
\]

\[
\leq \text{cost}(T), \quad \text{by assumption } w(e') \leq w(e)
\]
this means T' is a MST, also, $F \cup \{e\} \subseteq T'$, this concludes the proof.

- Proof of general algorithm

 . Induction Hypothesis: At iteration i, the edges selected by the alg is a subset of some MST.

 - Base case: $i = 0$, set of edges selected is empty

 - Induction step: Key lemma

- Prim's algorithm

```
3 3
1 4

2 5

3
```

- in implementation maintain $\text{dist}(u)$

 $\text{dist}(u)$: minimum cost of an edge (u, v) where v is a visited vertex
 (only maintained if u has not been visited)

- Kruskal's algorithm

```
3 3
1 4

2 5

3
```

Lectures Page 2
- Proof of Kruskal’s algorithm.

 main idea: Know general MST is correct.
 if show Kruskal is a special case of general MST
 then Kruskal must also be correct

going to show: every time Kruskal’s algorithm adds an edge (u,v), can find a cut (S, \overline{S}) where u \in S, v \in \overline{S}
the cut does not contain any previous edges, and (u,v)
is the min cost edge in (S, \overline{S})

Proof: when Kruskal adds an edge (u,v)
let S be the set of vertices that are connected to u using edges already selected by Kruskal.
by design of Kruskal, u \notin S
by design of Kruskal, \(u \not\in S \)
only need to prove \((u, v)\) is the min cost edge between \((S, \overline{S})\)
assume towards contradiction that there is an edge \(e\)
that crosses the cut \((S, \overline{S})\)
\[w(e) < w(u, v) \]
by Kruskal, edge \(e\) is going to be considered before \((u, v)\)
when edge \(e\) is considered, \((S, \overline{S})\) were not connected,
so edge \(e\) cannot create a cycle, Kruskal must have
selected edge \(e\). This is a contradiction.

- running time

 Prim: Naïve \(O(n^2) \)

 Fibonacci Heap \(O(m+n\log n) \)

 Kruskal: \(O(m\log n) \)